Skip to main content

Multimodal LLMs for Health Grounded in Individual-Specific Data

  • Conference paper
  • First Online:
Machine Learning for Multimodal Healthcare Data (ML4MHD 2023)

Abstract

Foundation large language models (LLMs) have shown an impressive ability to solve tasks across a wide range of fields including health. To effectively solve personalized health tasks, LLMs need the ability to ingest a diversity of data modalities that are relevant to an individual’s health status. In this paper, we take a step towards creating multimodal LLMs for health that are grounded in individual-specific data by developing a framework (HeLM: Health Large Language Model for Multimodal Understanding) that enables LLMs to use high-dimensional clinical modalities to estimate underlying disease risk. HeLM encodes complex data modalities by learning an encoder that maps them into the LLM’s token embedding space and for simple modalities like tabular data by serializing the data into text. Using data from the UK Biobank, we show that HeLM can effectively use demographic and clinical features in addition to high-dimensional time-series data to estimate disease risk. For example, HeLM achieves an AUROC of 0.75 for asthma prediction when combining tabular and spirogram data modalities compared with 0.49 when only using tabular data. Overall, we find that HeLM outperforms or performs at parity with classical machine learning approaches across a selection of eight binary traits. Furthermore, we investigate the downstream uses of this model such as its generalizability to out-of-distribution traits and its ability to power conversations around individual health and wellness.

A. Belyaeva and J. Cosentino—Equal contribution.

C.Y. McLean and N.A. Furlotte—Equal supervision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acosta, J.N., Falcone, G.J., Rajpurkar, P., Topol, E.J.: Multimodal biomedical AI. Nat. Med. 28(9), 1773–1784 (2022)

    Article  Google Scholar 

  2. Alayrac, J.B., et al.: Flamingo: a visual language model for few-shot learning. In: Advances in Neural Information Processing Systems, vol. 35, pp. 23716–23736 (2022)

    Google Scholar 

  3. Alipanahi, B., et al.: Large-scale machine-learning-based phenotyping significantly improves genomic discovery for optic nerve head morphology. Am. J. Hum. Genet. 108(7), 1217–1230 (2021)

    Article  Google Scholar 

  4. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)

    Google Scholar 

  5. Bycroft, C., et al.: The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726), 203–209 (2018)

    Article  Google Scholar 

  6. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. ACM, New York (2016). https://doi.org/10.1145/2939672.2939785

  7. Chung, H.W., et al.: Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416 (2022)

  8. Cosentino, J., et al.: Inference of chronic obstructive pulmonary disease with deep learning on raw spirograms identifies new genetic loci and improves risk models. Nat. Genet. 55, 787–795 (2023)

    Article  Google Scholar 

  9. Diaz-Papkovich, A., Anderson-Trocmé, L., Ben-Eghan, C., Gravel, S.: UMAP reveals cryptic population structure and phenotype heterogeneity in large genomic cohorts. PLoS Genet. 15(11), e1008432 (2019)

    Article  Google Scholar 

  10. Dinh, T., et al.: LIFT: language-interfaced fine-tuning for non-language machine learning tasks. In: Advances in Neural Information Processing Systems, vol. 35, pp. 11763–11784 (2022)

    Google Scholar 

  11. Driess, D., et al.: PaLM-E: an embodied multimodal language model. arXiv preprint arXiv:2303.03378 (2023)

  12. Girdhar, R., et al.: ImageBind: one embedding space to bind them all. arXiv preprint arXiv:2305.05665 (2023)

  13. Google: PaLM 2 technical report. arXiv preprint arXiv:2305.10403 (2023)

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2019)

    Google Scholar 

  16. Hegselmann, S., Buendia, A., Lang, H., Agrawal, M., Jiang, X., Sontag, D.: TabLLM: few-shot classification of tabular data with large language models. In: International Conference on Artificial Intelligence and Statistics, pp. 5549–5581. PMLR (2023)

    Google Scholar 

  17. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021)

    Google Scholar 

  18. Kirk, H.R., Vidgen, B., Röttger, P., Hale, S.A.: Personalisation within bounds: a risk taxonomy and policy framework for the alignment of large language models with personalised feedback. arXiv preprint arXiv:2303.05453 (2023)

  19. Kline, A., et al.: Multimodal machine learning in precision health: a scoping review. npj Digit. Med. 5(1), 171 (2022)

    Article  Google Scholar 

  20. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3045–3059 (2021). https://doi.org/10.18653/v1/2021.emnlp-main.243

  21. Li, J., Li, D., Savarese, S., Hoi, S.: BLIP-2: bootstrapping language-image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597 (2023)

  22. Lu, J., Clark, C., Zellers, R., Mottaghi, R., Kembhavi, A.: Unified-IO: a unified model for vision, language, and multi-modal tasks. arXiv preprint arXiv:2206.08916 (2022)

  23. Moor, M., et al.: Foundation models for generalist medical artificial intelligence. Nature 616(7956), 259–265 (2023)

    Article  Google Scholar 

  24. OpenAI: GPT-4 technical report. arXiv preprint arXiv:2303.08774 (2023)

  25. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  26. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do CIFAR-10 classifiers generalize to CIFAR-10? arXiv preprint arXiv:1806.00451 (2018)

  27. Sakornsakolpat, P., et al.: Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat. Genet. 51(3), 494–505 (2019)

    Article  Google Scholar 

  28. Salemi, A., Mysore, S., Bendersky, M., Zamani, H.: LaMP: when large language models meet personalization. arXiv preprint arXiv:2304.11406 (2023)

  29. Shrine, N., et al.: New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat. Genet. 51(3), 481–493 (2019)

    Article  Google Scholar 

  30. Singhal, K., et al.: Large language models encode clinical knowledge. arXiv preprint arXiv:2212.13138 (2022)

  31. Singhal, K., et al.: Towards expert-level medical question answering with large language models. arXiv preprint arXiv:2212.13138 (2022)

  32. Steinberg, E., Jung, K., Fries, J.A., Corbin, C.K., Pfohl, S.R., Shah, N.H.: Language models are an effective representation learning technique for electronic health record data. J. Biomed. Inform. 113, 103637 (2021)

    Article  Google Scholar 

  33. Vestbo, J., et al.: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 187(4), 347–365 (2013)

    Article  Google Scholar 

  34. Vokinger, K.N., Feuerriegel, S., Kesselheim, A.S.: Mitigating bias in machine learning for medicine. Commun. Med. 1(1), 25 (2021)

    Article  Google Scholar 

  35. Wang, Y., et al.: Preserving in-context learning ability in large language model fine-tuning. arXiv preprint arXiv:2211.00635 (2022)

  36. Wei, J., et al.: Emergent abilities of large language models. arXiv preprint arXiv:2206.07682 (2022)

  37. Yang, K.D., et al.: Multi-domain translation between single-cell imaging and sequencing data using autoencoders. Nat. Commun. 12(1), 31 (2021)

    Article  Google Scholar 

  38. Yang, X., et al.: A large language model for electronic health records. npj Digit. Med. 5(1), 194 (2022)

    Article  MathSciNet  Google Scholar 

  39. Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., Wu, Y.: CoCa: contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917 (2022)

  40. Zhou, H.Y., Chen, X., Zhang, Y., Luo, R., Wang, L., Yu, Y.: Generalized radiograph representation learning via cross-supervision between images and free-text radiology reports. Nat. Mach. Intell. 4(1), 32–40 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Katrin Tomanek for providing software, inspiration, and know-how that influenced the direction of this work. We also thank Ted Yun for helpful discussions and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Furlotte .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 690 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belyaeva, A. et al. (2024). Multimodal LLMs for Health Grounded in Individual-Specific Data. In: Maier, A.K., Schnabel, J.A., Tiwari, P., Stegle, O. (eds) Machine Learning for Multimodal Healthcare Data. ML4MHD 2023. Lecture Notes in Computer Science, vol 14315. Springer, Cham. https://doi.org/10.1007/978-3-031-47679-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47679-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47678-5

  • Online ISBN: 978-3-031-47679-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics