Skip to main content

Speed-of-Sound Mapping for Pulse-Echo Ultrasound Raw Data Using Linked-Autoencoders

  • Conference paper
  • First Online:
Machine Learning for Multimodal Healthcare Data (ML4MHD 2023)

Abstract

Recent studies showed the possibility of extracting SoS information from pulse-echo ultrasound raw data (a.k.a. RF data) using deep neural networks that are fully trained on simulated data. These methods take sensor domain data, i.e., RF data, as input and train a network in an end-to-end fashion to learn the implicit mapping between the RF data domain and the SoS domain. However, such networks are prone to overfitting to simulated data which results in poor performance and instability when tested on measured data. We propose a novel method for SoS mapping employing learned representations from two linked autoencoders. We test our approach on simulated and measured data acquired from human breast mimicking phantoms. We show that SoS mapping is possible using the learned representations by linked autoencoders. The proposed method has a Mean Absolute Percentage Error (MAPE) of \(2.39\%\) on the simulated data. On the measured data, the predictions of the proposed method are close to the expected values (MAPE of \(1.1\) \(\%\)). Compared to an end-to-end trained network, the proposed method shows higher stability and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antun, V., Renna, F., Poon, C., Adcock, B., Hansen, A.C.: On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc. Natl. Acad. Sci. 117(48), 30088–30095 (2020)

    Article  Google Scholar 

  2. Bengio, Y.: Learning Deep Architectures for AI. Now Publishers Inc. (2009)

    Google Scholar 

  3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  4. Chen, M., Shi, X., Zhang, Y., Wu, D., Guizani, M.: Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans. Big Data 7, 750–758 (2017)

    Article  Google Scholar 

  5. Feigin, M., Freedman, D., Anthony, B.W.: A deep learning framework for single-sided sound speed inversion in medical ultrasound. IEEE Trans. Biomed. Eng. 67(4), 1142–1151 (2019)

    Article  Google Scholar 

  6. Feigin, M., Zwecker, M., Freedman, D., Anthony, B.W.: Detecting muscle activation using ultrasound speed of sound inversion with deep learning. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2092–2095. IEEE (2020)

    Google Scholar 

  7. Fu, W., Breininger, K., Schaffert, R., Ravikumar, N., Maier, A.: A divide-and-conquer approach towards understanding deep networks. In: Shen, D., et al. (ed.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2019. LNCS, vol. 11764, pp. 183–191. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_21

  8. Fu, W., Husvogt, L., Ploner, S., Fujimoto, J.G., Maier, A.: Modularization of deep networks allows cross-modality reuse. In: Bildverarbeitung für die Medizin 2020. I, pp. 274–279. Springer, Wiesbaden (2020). https://doi.org/10.1007/978-3-658-29267-6_61

    Chapter  Google Scholar 

  9. Hager, P.A., Khun Jush, F., Biele, M., Düppenbecker, P.M., Schmidt, O., Benini, L.: LightABVS: a digital ultrasound transducer for multi-modality automated breast volume scanning. In: 2019 IEEE International Ultrasonics Symposium (IUS) (2019)

    Google Scholar 

  10. Heller, M., Schmitz, G.: Deep learning-based speed-of-sound reconstruction for single-sided pulse-echo ultrasound using a coherency measure as input feature. In: 2021 IEEE International Ultrasonics Symposium (IUS), pp. 1–4. IEEE (2021)

    Google Scholar 

  11. Hill, C.R., Bamber, J.C., ter Haar, G.R.: Physical Principles of Medical Ultrasonics (2004)

    Google Scholar 

  12. Khun Jush, F., Biele, M., Dueppenbecker, P.M., Maier, A.: Deep learning for ultrasound speed-of-sound reconstruction: impacts of training data diversity on stability and robustness. MELBA J. Mach. Learn. Biomed. Imaging 2, 202–236 (2023)

    Google Scholar 

  13. Khun Jush, F., Biele, M., Dueppenbecker, P.M., Schmidt, O., Maier, A.: DNN-based speed-of-sound reconstruction for automated breast ultrasound. In: 2020 IEEE International Ultrasonics Symposium (IUS), pp. 1–7. IEEE (2020)

    Google Scholar 

  14. Khun Jush, F., Dueppenbecker, P.M., Maier, A.: Data-driven speed-of-sound reconstruction for medical ultrasound: impacts of training data format and imperfections on convergence. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds.) MIUA 2021. LNCS, vol. 12722, pp. 140–150. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80432-9_11

    Chapter  Google Scholar 

  15. Li, C., Duric, N., Littrup, P., Huang, L.: In vivo breast sound-speed imaging with ultrasound tomography. Ultrasound Med. Biol. 35(10), 1615–1628 (2009)

    Article  Google Scholar 

  16. Maier, A., Köstler, H., Heisig, M., Krauss, P., Yang, S.H.: Known operator learning and hybrid machine learning in medical imaging - a review of the past, the present, and the future. Prog. Biomed. Eng. 4, 022002 (2022)

    Article  Google Scholar 

  17. Maier, A., et al.: Precision learning: towards use of known operators in neural networks. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 183–188. IEEE (2018)

    Google Scholar 

  18. Maier, A., Syben, C., Lasser, T., Riess, C.: A gentle introduction to deep learning in medical image processing. Z. Med. Phys. 29(2), 86–101 (2019)

    Article  Google Scholar 

  19. Maier, A.K., et al.: Learning with known operators reduces maximum error bounds. Nat. Mach. Intell. 1(8), 373–380 (2019)

    Article  Google Scholar 

  20. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  21. Oh, S.H., Kim, M.-G., Kim, Y., Kwon, H., Bae, H.-M.: A neural framework for multi-variable lesion quantification through b-mode style transfer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 222–231. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_22

    Chapter  Google Scholar 

  22. Ruby, L., et al.: Breast cancer assessment with pulse-echo speed of sound ultrasound from intrinsic tissue reflections: proof-of-concept. Invest. Radiol. 54(7), 419–427 (2019)

    Article  Google Scholar 

  23. Sak, M., et al.: Using speed of sound imaging to characterize breast density. Ultrasound Med. Biol. 43(1), 91–103 (2017)

    Article  Google Scholar 

  24. Sanabria, S.J., et al.: Breast-density assessment with hand-held ultrasound: a novel biomarker to assess breast cancer risk and to tailor screening? Eur. Radiol. 28(8), 3165–3175 (2018)

    Article  Google Scholar 

  25. Sanabria, S.J., Rominger, M.B., Goksel, O.: Speed-of-sound imaging based on reflector delineation. IEEE Trans. Biomed. Eng. 66(7), 1949–1962 (2018)

    Article  Google Scholar 

  26. Schreiman, J., Gisvold, J., Greenleaf, J.F., Bahn, R.: Ultrasound transmission computed tomography of the breast. Radiology 150(2), 523–530 (1984)

    Article  Google Scholar 

  27. Stähli, P., Frenz, M., Jaeger, M.: Bayesian approach for a robust speed-of-sound reconstruction using pulse-echo ultrasound. IEEE Trans. Med. Imaging 40(2), 457–467 (2020)

    Article  Google Scholar 

  28. Stähli, P., Kuriakose, M., Frenz, M., Jaeger, M.: Improved forward model for quantitative pulse-echo speed-of-sound imaging. Ultrasonics 108, 106168 (2020)

    Article  Google Scholar 

  29. Treeby, B.E., Cox, B.T.: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15(2), 021314 (2010)

    Article  Google Scholar 

  30. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

  31. Vishnevskiy, V., Sanabria, S.J., Goksel, O.: Image reconstruction via variational network for real-time hand-held sound-speed imaging. In: Knoll, F., Maier, A., Rueckert, D. (eds.) MLMIR 2018. LNCS, vol. 11074, pp. 120–128. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00129-2_14

    Chapter  Google Scholar 

  32. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)

    Article  Google Scholar 

  33. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Michael Golatta and the university hospital of Heidelberg for providing the Tomosynthesis dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farnaz Khun Jush .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khun Jush, F., Dueppenbecker, P.M., Maier, A. (2024). Speed-of-Sound Mapping for Pulse-Echo Ultrasound Raw Data Using Linked-Autoencoders. In: Maier, A.K., Schnabel, J.A., Tiwari, P., Stegle, O. (eds) Machine Learning for Multimodal Healthcare Data. ML4MHD 2023. Lecture Notes in Computer Science, vol 14315. Springer, Cham. https://doi.org/10.1007/978-3-031-47679-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47679-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47678-5

  • Online ISBN: 978-3-031-47679-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics