Abstract
As concerns have grown about bias in ML models, the field of ML fairness has expanded considerably beyond classification. Researchers now propose fairness metrics for regression, but unlike classification there is no literature review of regression fairness metrics and no comprehensive resource to define, categorize, and compare them. To address this, we have surveyed the field, categorized metrics according to which notion of fairness they measure, and integrated them into an OWL2 ontology for fair regression extending our previously-developed ontology for reasoning about concepts in fair classification. We demonstrate its usage through an interactive web application that dynamically builds SPARQL queries to display fairness metrics meeting users’ selected requirements. Through this research, we provide a resource intended to support fairness researchers and model developers alike, and demonstrate methods of making an ontology accessible to users who may be unfamiliar with background knowledge of its domain and/or ontologies themselves.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Since its publication, we have also begun adding some concepts for fair clustering.
- 2.
Classes are shown in bold, and properties are shown in italics.
- 3.
References
Agarwal, A., Dudík, M., Wu, Z.S.: Fair regression: quantitative definitions and reduction-based algorithms. In: International Conference on Machine Learning (2019)
Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias: there’s software used across the country to predict future criminals. and it’s biased against blacks (2016). https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
del Barrio, E., Gordaliza, P., Loubes, J.M.: Review of mathematical frameworks for fairness in machine learning. arXiv preprint arXiv:2005.13755 (2020)
Bebee, B.: Blazegraph wiki. https://github.com/blazegraph/database/wiki
Bellamy, R.K.E., et al.: AI fairness 360: an extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias (2018)
Berk, R.: An impact assessment of machine learning risk forecasts on parole board decisions and recidivism. J. Exp. Criminol. 13, 193–216 (2017)
Berk, R.A., et al.: A convex framework for fair regression. ArXiv abs/1706.02409 (2017)
Binns, R.: On the apparent conflict between individual and group fairness. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 514–524 (2020)
Bloise, F., Brunori, P., Piraino, P.: Estimating intergenerational income mobility on sub-optimal data: a machine learning approach. J. Econ. Inequal. 19(4), 643–665 (2021)
Braga, J., Dias, J.L.R., Regateiro, F.: A machine learning ontology, October 2020. https://doi.org/10.31226/osf.io/rc954,osf.io/preprints/frenxiv/rc954
Breger, C.: Criteria for algorithmic fairness metric selection under different supervised classification scenarios. Master’s thesis, Pompeu Fabra University (2020). http://hdl.handle.net/10230/46359
Calders, T., Karim, A., Kamiran, F., Ali, W., Zhang, X.: Controlling attribute effect in linear regression. In: 2013 IEEE 13th International Conference on Data Mining, pp. 71–80 (2013). https://doi.org/10.1109/ICDM.2013.114
Caton, S., Haas, C.: Fairness in machine learning: a survey. arXiv preprint arXiv:2010.04053 (2020)
Caton, S., Haas, C.: Fairness in machine learning: a survey. ACM Comput. Surv. (2023). https://doi.org/10.1145/3616865. Just Accepted
Cervone, D.: MathJax: a platform for mathematics on the web. Not. AMS 59(2), 312–316 (2012)
Chang, W., et al.: shiny: Web Application Framework for R (2022). https://CRAN.R-project.org/package=shiny. r package version 1.7.4
Chari, S., Seneviratne, O., Gruen, D.M., Foreman, M.A., Das, A.K., McGuinness, D.L.: Explanation ontology: a model of explanations for user-centered AI. In: Pan, J.Z., et al. (eds.) ISWC 2020, Pari II. LNCS, vol. 12507, pp. 228–243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_15
Chi, J., Tian, Y., Gordon, G.J., Zhao, H.: Understanding and mitigating accuracy disparity in regression (2021)
Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5(2), 153–163 (2017)
Chouldechova, A., Roth, A.: The frontiers of fairness in machine learning (2018)
Chzhen, E., Denis, C., Hebiri, M., Oneto, L., Pontil, M.: Fair regression via plug-in estimator and recalibration with statistical guarantees. In: Neural Information Processing Systems (2020)
Chzhen, E., Denis, C., Hebiri, M., Oneto, L., Pontil, M.: Fair regression with Wasserstein barycenters. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 7321–7331. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/51cdbd2611e844ece5d80878eb770436-Paper.pdf
Chzhen, E., Schreuder, N.: A minimax framework for quantifying risk-fairness trade-off in regression (2022)
Dumontier, M., et al.: The semanticscience integrated ontology (SIO) for biomedical research and knowledge discovery. J. Biomed. Semant. 5, 1–11 (2014)
Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–226 (2012)
Flores, A.W., Bechtel, K., Lowenkamp, C.T.: False positives, false negatives, and false analyses: a rejoinder to machine bias: there’s software used across the country to predict future criminals. and it’s biased against blacks. Fed. Probation 80, 38 (2016)
Franklin, J.S., Bhanot, K., Ghalwash, M., Bennett, K.P., McCusker, J., McGuinness, D.L.: An ontology for fairness metrics. In: Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, pp. 265–275 (2022)
Friedler, S.A., Scheidegger, C., Venkatasubramanian, S.: On the (im)possibility of fairness. CoRR abs/1609.07236 (2016). http://arxiv.org/abs/1609.07236
Friedler, S.A., Scheidegger, C., Venkatasubramanian, S.: The (im) possibility of fairness: Different value systems require different mechanisms for fair decision making. Commun. ACM 64(4), 136–143 (2021)
Gonzalez-Beltran, A., Rocca-Serra, P., Burke, O., Sansone, S.A.: Stato: an ontology of statistical methods (2012). http://stato-ontology.org/
Kleinberg, J.M., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair determination of risk scores. CoRR abs/1609.05807 (2016). http://arxiv.org/abs/1609.05807
Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015)
Kruppa, J., et al.: Probability estimation with machine learning methods for dichotomous and multicategory outcome: applications. Biom. J. 56(4), 564–583 (2014)
Liem, C.C., et al.: Psychology meets machine learning: interdisciplinary perspectives on algorithmic job candidate screening. explainable and interpretable models in computer vision and machine learning, pp. 197–253 (2018)
Makhlouf, K., Zhioua, S., Palamidessi, C.: Machine learning fairness notions: bridging the gap with real-world applications. Inf. Process. Manage. 58(5), 102642 (2021)
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. 54(6) (2021). https://doi.org/10.1145/3457607
Mhlanga, D.: Financial inclusion in emerging economies: the application of machine learning and artificial intelligence in credit risk assessment. Int. J. Financ. Stud. 9(3), 39 (2021)
Narasimhan, H., Cotter, A., Gupta, M., Wang, S.: Pairwise fairness for ranking and regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5248–5255, April 2020. https://doi.org/10.1609/aaai.v34i04.5970
Panigutti, C., Perotti, A., Pedreschi, D.: Doctor XAI: an ontology-based approach to black-box sequential data classification explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* 2020, pp. 629–639. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3351095.3372855
Perera, A., et al.: Search-based fairness testing for regression-based machine learning systems. Empir. Softw. Eng. 27 (2022). https://doi.org/10.1007/s10664-022-10116-7
Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)
Soergel, D., Helfer, O.: A metrics ontology. an intellectual infrastructure for defining, managing, and applying metrics. In: Knowledge Organization for a Sustainable World: Challenges and Perspectives for Cultural, Scientific, and Technological Sharing in a Connected Society: Proceedings of the Fourteenth International ISKO Conference, Ergon Verlag, Rio de Janeiro, Brazil, 27–29 September 2016 Ri, vol. 15, p. 333. NIH Public Access (2016)
Steyerberg, E.W., van der Ploeg, T., Van Calster, B.: Risk prediction with machine learning and regression methods. Biom. J. 56(4), 601–606 (2014)
Tudorache, T., Noy, N.F., Tu, S., Musen, M.A.: Supporting collaborative ontology development in Protégé. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 17–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1_2
Verma, S., Rubin, J.: Fairness definitions explained. In: 2018 IEEE/ACM International Workshop on Software Fairness (FairWare), Gothenburg, Sweden, pp. 1–7. IEEE (2018). https://doi.org/10.23919/FAIRWARE.2018.8452913
Wan, M., Zha, D., Liu, N., Zou, N.: Modeling techniques for machine learning fairness: a survey. CoRR abs/2111.03015 (2021). https://arxiv.org/abs/2111.03015
Xie, F., Chakraborty, B., Ong, M.E.H., Goldstein, B.A., Liu, N., et al.: Autoscore: a machine learning-based automatic clinical score generator and its application to mortality prediction using electronic health records. JMIR Med. Inform. 8(10), e21798 (2020)
Acknowledgements
This work is partially supported by IBM Research AI through the AI Horizons Network. We thank Mohamed Ghalwash and Ching-Hua Chen, Ioana Baldini and Dennis Wei (IBM Research) and Lydia Halter (RPI) for their research assistance.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Franklin, J.S., Powers, H., Erickson, J.S., McCusker, J., McGuinness, D.L., Bennett, K.P. (2023). An Ontology for Reasoning About Fairness in Regression and Machine Learning. In: Ortiz-Rodriguez, F., Villazón-Terrazas, B., Tiwari, S., Bobed, C. (eds) Knowledge Graphs and Semantic Web. KGSWC 2023. Lecture Notes in Computer Science, vol 14382. Springer, Cham. https://doi.org/10.1007/978-3-031-47745-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-47745-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47744-7
Online ISBN: 978-3-031-47745-4
eBook Packages: Computer ScienceComputer Science (R0)