Skip to main content

An Ontology for Reasoning About Fairness in Regression and Machine Learning

  • Conference paper
  • First Online:
Knowledge Graphs and Semantic Web (KGSWC 2023)

Abstract

As concerns have grown about bias in ML models, the field of ML fairness has expanded considerably beyond classification. Researchers now propose fairness metrics for regression, but unlike classification there is no literature review of regression fairness metrics and no comprehensive resource to define, categorize, and compare them. To address this, we have surveyed the field, categorized metrics according to which notion of fairness they measure, and integrated them into an OWL2 ontology for fair regression extending our previously-developed ontology for reasoning about concepts in fair classification. We demonstrate its usage through an interactive web application that dynamically builds SPARQL queries to display fairness metrics meeting users’ selected requirements. Through this research, we provide a resource intended to support fairness researchers and model developers alike, and demonstrate methods of making an ontology accessible to users who may be unfamiliar with background knowledge of its domain and/or ontologies themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Since its publication, we have also begun adding some concepts for fair clustering.

  2. 2.

    Classes are shown in bold, and properties are shown in italics.

  3. 3.

    https://github.com/frankj-rpi/fairness-metrics-ontology/blob/main/competency-questions.md.

References

  1. Agarwal, A., Dudík, M., Wu, Z.S.: Fair regression: quantitative definitions and reduction-based algorithms. In: International Conference on Machine Learning (2019)

    Google Scholar 

  2. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias: there’s software used across the country to predict future criminals. and it’s biased against blacks (2016). https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

  3. del Barrio, E., Gordaliza, P., Loubes, J.M.: Review of mathematical frameworks for fairness in machine learning. arXiv preprint arXiv:2005.13755 (2020)

  4. Bebee, B.: Blazegraph wiki. https://github.com/blazegraph/database/wiki

  5. Bellamy, R.K.E., et al.: AI fairness 360: an extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias (2018)

    Google Scholar 

  6. Berk, R.: An impact assessment of machine learning risk forecasts on parole board decisions and recidivism. J. Exp. Criminol. 13, 193–216 (2017)

    Article  Google Scholar 

  7. Berk, R.A., et al.: A convex framework for fair regression. ArXiv abs/1706.02409 (2017)

    Google Scholar 

  8. Binns, R.: On the apparent conflict between individual and group fairness. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 514–524 (2020)

    Google Scholar 

  9. Bloise, F., Brunori, P., Piraino, P.: Estimating intergenerational income mobility on sub-optimal data: a machine learning approach. J. Econ. Inequal. 19(4), 643–665 (2021)

    Article  Google Scholar 

  10. Braga, J., Dias, J.L.R., Regateiro, F.: A machine learning ontology, October 2020. https://doi.org/10.31226/osf.io/rc954,osf.io/preprints/frenxiv/rc954

  11. Breger, C.: Criteria for algorithmic fairness metric selection under different supervised classification scenarios. Master’s thesis, Pompeu Fabra University (2020). http://hdl.handle.net/10230/46359

  12. Calders, T., Karim, A., Kamiran, F., Ali, W., Zhang, X.: Controlling attribute effect in linear regression. In: 2013 IEEE 13th International Conference on Data Mining, pp. 71–80 (2013). https://doi.org/10.1109/ICDM.2013.114

  13. Caton, S., Haas, C.: Fairness in machine learning: a survey. arXiv preprint arXiv:2010.04053 (2020)

  14. Caton, S., Haas, C.: Fairness in machine learning: a survey. ACM Comput. Surv. (2023). https://doi.org/10.1145/3616865. Just Accepted

  15. Cervone, D.: MathJax: a platform for mathematics on the web. Not. AMS 59(2), 312–316 (2012)

    MATH  Google Scholar 

  16. Chang, W., et al.: shiny: Web Application Framework for R (2022). https://CRAN.R-project.org/package=shiny. r package version 1.7.4

  17. Chari, S., Seneviratne, O., Gruen, D.M., Foreman, M.A., Das, A.K., McGuinness, D.L.: Explanation ontology: a model of explanations for user-centered AI. In: Pan, J.Z., et al. (eds.) ISWC 2020, Pari II. LNCS, vol. 12507, pp. 228–243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_15

    Chapter  Google Scholar 

  18. Chi, J., Tian, Y., Gordon, G.J., Zhao, H.: Understanding and mitigating accuracy disparity in regression (2021)

    Google Scholar 

  19. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5(2), 153–163 (2017)

    Article  Google Scholar 

  20. Chouldechova, A., Roth, A.: The frontiers of fairness in machine learning (2018)

    Google Scholar 

  21. Chzhen, E., Denis, C., Hebiri, M., Oneto, L., Pontil, M.: Fair regression via plug-in estimator and recalibration with statistical guarantees. In: Neural Information Processing Systems (2020)

    Google Scholar 

  22. Chzhen, E., Denis, C., Hebiri, M., Oneto, L., Pontil, M.: Fair regression with Wasserstein barycenters. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 7321–7331. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper_files/paper/2020/file/51cdbd2611e844ece5d80878eb770436-Paper.pdf

  23. Chzhen, E., Schreuder, N.: A minimax framework for quantifying risk-fairness trade-off in regression (2022)

    Google Scholar 

  24. Dumontier, M., et al.: The semanticscience integrated ontology (SIO) for biomedical research and knowledge discovery. J. Biomed. Semant. 5, 1–11 (2014)

    Article  Google Scholar 

  25. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–226 (2012)

    Google Scholar 

  26. Flores, A.W., Bechtel, K., Lowenkamp, C.T.: False positives, false negatives, and false analyses: a rejoinder to machine bias: there’s software used across the country to predict future criminals. and it’s biased against blacks. Fed. Probation 80, 38 (2016)

    Google Scholar 

  27. Franklin, J.S., Bhanot, K., Ghalwash, M., Bennett, K.P., McCusker, J., McGuinness, D.L.: An ontology for fairness metrics. In: Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society, pp. 265–275 (2022)

    Google Scholar 

  28. Friedler, S.A., Scheidegger, C., Venkatasubramanian, S.: On the (im)possibility of fairness. CoRR abs/1609.07236 (2016). http://arxiv.org/abs/1609.07236

  29. Friedler, S.A., Scheidegger, C., Venkatasubramanian, S.: The (im) possibility of fairness: Different value systems require different mechanisms for fair decision making. Commun. ACM 64(4), 136–143 (2021)

    Article  Google Scholar 

  30. Gonzalez-Beltran, A., Rocca-Serra, P., Burke, O., Sansone, S.A.: Stato: an ontology of statistical methods (2012). http://stato-ontology.org/

  31. Kleinberg, J.M., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair determination of risk scores. CoRR abs/1609.05807 (2016). http://arxiv.org/abs/1609.05807

  32. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 13, 8–17 (2015)

    Article  Google Scholar 

  33. Kruppa, J., et al.: Probability estimation with machine learning methods for dichotomous and multicategory outcome: applications. Biom. J. 56(4), 564–583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liem, C.C., et al.: Psychology meets machine learning: interdisciplinary perspectives on algorithmic job candidate screening. explainable and interpretable models in computer vision and machine learning, pp. 197–253 (2018)

    Google Scholar 

  35. Makhlouf, K., Zhioua, S., Palamidessi, C.: Machine learning fairness notions: bridging the gap with real-world applications. Inf. Process. Manage. 58(5), 102642 (2021)

    Article  Google Scholar 

  36. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. 54(6) (2021). https://doi.org/10.1145/3457607

  37. Mhlanga, D.: Financial inclusion in emerging economies: the application of machine learning and artificial intelligence in credit risk assessment. Int. J. Financ. Stud. 9(3), 39 (2021)

    Article  Google Scholar 

  38. Narasimhan, H., Cotter, A., Gupta, M., Wang, S.: Pairwise fairness for ranking and regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5248–5255, April 2020. https://doi.org/10.1609/aaai.v34i04.5970

  39. Panigutti, C., Perotti, A., Pedreschi, D.: Doctor XAI: an ontology-based approach to black-box sequential data classification explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* 2020, pp. 629–639. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3351095.3372855

  40. Perera, A., et al.: Search-based fairness testing for regression-based machine learning systems. Empir. Softw. Eng. 27 (2022). https://doi.org/10.1007/s10664-022-10116-7

  41. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007)

    Article  Google Scholar 

  42. Soergel, D., Helfer, O.: A metrics ontology. an intellectual infrastructure for defining, managing, and applying metrics. In: Knowledge Organization for a Sustainable World: Challenges and Perspectives for Cultural, Scientific, and Technological Sharing in a Connected Society: Proceedings of the Fourteenth International ISKO Conference, Ergon Verlag, Rio de Janeiro, Brazil, 27–29 September 2016 Ri, vol. 15, p. 333. NIH Public Access (2016)

    Google Scholar 

  43. Steyerberg, E.W., van der Ploeg, T., Van Calster, B.: Risk prediction with machine learning and regression methods. Biom. J. 56(4), 601–606 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tudorache, T., Noy, N.F., Tu, S., Musen, M.A.: Supporting collaborative ontology development in Protégé. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 17–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-1_2

    Chapter  Google Scholar 

  45. Verma, S., Rubin, J.: Fairness definitions explained. In: 2018 IEEE/ACM International Workshop on Software Fairness (FairWare), Gothenburg, Sweden, pp. 1–7. IEEE (2018). https://doi.org/10.23919/FAIRWARE.2018.8452913

  46. Wan, M., Zha, D., Liu, N., Zou, N.: Modeling techniques for machine learning fairness: a survey. CoRR abs/2111.03015 (2021). https://arxiv.org/abs/2111.03015

  47. Xie, F., Chakraborty, B., Ong, M.E.H., Goldstein, B.A., Liu, N., et al.: Autoscore: a machine learning-based automatic clinical score generator and its application to mortality prediction using electronic health records. JMIR Med. Inform. 8(10), e21798 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by IBM Research AI through the AI Horizons Network. We thank Mohamed Ghalwash and Ching-Hua Chen, Ioana Baldini and Dennis Wei (IBM Research) and Lydia Halter (RPI) for their research assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jade S. Franklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franklin, J.S., Powers, H., Erickson, J.S., McCusker, J., McGuinness, D.L., Bennett, K.P. (2023). An Ontology for Reasoning About Fairness in Regression and Machine Learning. In: Ortiz-Rodriguez, F., Villazón-Terrazas, B., Tiwari, S., Bobed, C. (eds) Knowledge Graphs and Semantic Web. KGSWC 2023. Lecture Notes in Computer Science, vol 14382. Springer, Cham. https://doi.org/10.1007/978-3-031-47745-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47745-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47744-7

  • Online ISBN: 978-3-031-47745-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics