Skip to main content

Smart Noise Detection for Statistical Disclosure Attacks

  • Conference paper
  • First Online:
Secure IT Systems (NordSec 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14324))

Included in the following conference series:

  • 220 Accesses

Abstract

While anonymization systems like mix networks can provide privacy to their users by, e.g., hiding their communication relationships, several traffic analysis attacks can deanonymize them. In this work, we examine Statistical Disclosure Attacks and introduce a new implementation called the Smart Noise Statistical Disclosure Attack. This attack can improve results by examining how often other users send together with the attacker’s target to better filter out the noise caused by them. We evaluate this attack by comparing it to previous variants in various simulations and thus show how it can improve upon them. Further, we demonstrate how other implementations can be improved by combing them with our approach to noise calculation. Finally, we critically review used evaluation metrics to determine their significance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We allow senders and recipients to appear multiple times per round. Thus we talk about lists, not sets.

  2. 2.

    This assumes random and independent senders. Thus the chance of a non-cloak background round appearing can be calculated (with values for round 25) as \((fraction\; of\; non-cloak\; users)^{b}=(1-\frac{cloak user count}{N})^{b}=(1-(\frac{1183}{20000}))^{50} \approx 0.047\). Note that there can be small but insignificant differences in the simulated results due to senders appearing multiple times per round, reducing the number of distinct cloak users.

  3. 3.

    E.g., senders \(n_0\) and \(n_1\) are closer and send together more often than \(n_0\) and \(n_{50}\). Note that senders \(n_0\) and \(n_{99}\) are neighbors for \(N=100\).

  4. 4.

    Or in the case of symmetrical communication, that her next communication (including messages received) will be performed with this user.

References

  1. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1981)

    Article  Google Scholar 

  2. Danezis, G.: Statistical disclosure attacks: traffic confirmation in open environments. In: Gritzalis, D., De Capitani di Vimercati, S., Samarati, P., Katsikas, S. (eds.) SEC 2003. ITIFIP, vol. 122, pp. 421–426. Springer, Boston, MA (2003). https://doi.org/10.1007/978-0-387-35691-4_40

    Chapter  Google Scholar 

  3. Danezis, G., Diaz, C., Troncoso, C.: Two-sided statistical disclosure attack. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 30–44. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75551-7_3

    Chapter  Google Scholar 

  4. Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6_5

    Chapter  Google Scholar 

  5. Emamdoost, N., Dousti, M.S., Jalili, R.: Statistical disclosure: improved, extended, and resisted. arXiv preprint arXiv:1710.00101 (2017)

  6. Gaballah, S.A., Abdullah, L., Tran, M.T., Zimmer, E., Mühlhäuser, M.: On the effectiveness of intersection attacks in anonymous microblogging. In: Reiser, H.P., Kyas, M. (eds.) NordSec 2022. LNCS, vol. 13700, pp. 3–19. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22295-5_1

    Chapter  Google Scholar 

  7. Kedogan, D., Agrawal, D., Penz, S.: Limits of anonymity in open environments. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 53–69. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36415-3_4

    Chapter  Google Scholar 

  8. Kesdogan, D., Egner, J., Büschkes, R.: Stop- and- Go-MIXes providing probabilistic anonymity in an open system. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 83–98. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49380-8_7

    Chapter  Google Scholar 

  9. Kesdogan, D., Pimenidis, L.: The hitting set attack on anonymity protocols. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 326–339. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30114-1_23

    Chapter  Google Scholar 

  10. Mallesh, N., Wright, M.: Countering statistical disclosure with receiver-bound cover traffic. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 547–562. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74835-9_36

    Chapter  Google Scholar 

  11. Mallesh, N., Wright, M.: The reverse statistical disclosure attack. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 221–234. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16435-4_17

    Chapter  Google Scholar 

  12. Mathewson, N., Dingledine, R.: Practical traffic analysis: extending and resisting statistical disclosure. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 17–34. Springer, Heidelberg (2005). https://doi.org/10.1007/11423409_2

    Chapter  Google Scholar 

  13. Pérez-González, F., Troncoso, C.: Understanding statistical disclosure: a least squares approach. In: Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 38–57. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31680-7_3

    Chapter  Google Scholar 

  14. Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity—a proposal for terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44702-4_1

    Chapter  Google Scholar 

  15. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transactions. ACM Trans. Inf. Syst. Secur. (TISSEC) 1(1), 66–92 (1998)

    Article  Google Scholar 

  16. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6_4

    Chapter  Google Scholar 

  17. Troncoso, C., Gierlichs, B., Preneel, B., Verbauwhede, I.: Perfect matching disclosure attacks. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134, pp. 2–23. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70630-4_2

    Chapter  Google Scholar 

  18. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Roßberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roßberger, M., Kesdoğan, D. (2024). Smart Noise Detection for Statistical Disclosure Attacks. In: Fritsch, L., Hassan, I., Paintsil, E. (eds) Secure IT Systems. NordSec 2023. Lecture Notes in Computer Science, vol 14324. Springer, Cham. https://doi.org/10.1007/978-3-031-47748-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47748-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47747-8

  • Online ISBN: 978-3-031-47748-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics