Abstract
Many classical blockchains are known to have an embarrassingly low transaction throughput, down to Bitcoin’s notorious seven transactions per second limit. Various proposals and implementations for increasing throughput emerged in the first decade of blockchain research. But how much concurrency is possible? In their early days, blockchains were mostly used for simple transfers from user to user. More recently, however, decentralized finance (DeFi) and NFT marketplaces have completely changed what is happening on blockchains. Both are built using smart contracts and have gained significant popularity. Transactions on DeFi and NFT marketplaces often interact with the same smart contracts. We believe this development has transformed blockchain usage. In our work, we perform a historical analysis of Ethereum’s transaction graph. We study how much interaction between transactions there was historically and how much there is now. We find that the rise of DeFi and NFT marketplaces has led to an increase in “centralization” in the transaction graph. More transactions are now interconnected: currently, there are around 200 transactions per block with 4000 interdependencies between them. We further find that the parallelizability of Ethereum’s current interconnected transaction workload is limited. A speedup exceeding a factor of five is currently unrealistic.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Measured by total fees users are willing to pay to use the blockchain (see https://cryptofees.info) Ethereum is orders of magnitude more popular than other smart contract-enabled blockchains, such as Avalanche and Cardano.
- 2.
Note that the disentanglement does not impact the size of the heaviest transaction, and neither the total gas of a block.
References
Amiri, M.J., Agrawal, D., El Abbadi, A.: Parblockchain: leveraging transaction parallelism in permissioned blockchain systems. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1337–1347. IEEE (2019)
Anjana, P.S., Kumari, S., Peri, S., Rathor, S., Somani, A.: Optsmart: a space efficient optimistic concurrent execution of smart contracts. Distributed and Parallel Databases, pp. 1–53 (2022)
Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R.: Divide and scale: formalization of distributed ledger sharding protocols. arXiv preprint arXiv:1910.10434 (2019)
Bai, Q., Zhang, C., Xu, Y., Chen, X., Wang, X.: Evolution of ethereum: a temporal graph perspective. arXiv preprint arXiv:2001.05251 (2020)
Buterin, V., Swende, M.: Eip-2929: gas cost increases for state access opcodes (2022). http://eips.ethereum.org/EIPS/eip-2929
Buterin, V., Swende, M.: Eip-2930: Optional access lists (2022). http://eips.ethereum.org/EIPS/eip-2930
Cavicchioli, M.: Ethereum will reach 100,000 transactions per second (2022). http://en.cryptonomist.ch/2022/07/22/ethereum-reach-100000-transactions-second/
Chen, T., et al.: Dataether: data exploration framework for ethereum. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1369–1380. IEEE (2019)
Chen, Y., Guo, Z., Li, R., Chen, S., Zhou, L., Zhou, Y., Zhang, X.: Forerunner: constraint-based speculative transaction execution for ethereum. In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, pp. 570–587 (2021)
Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards scaling blockchain systems via sharding. In: Proceedings of the 2019 International Conference on Management of Data, pp. 123–140 (2019)
Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin duplex micropayment channels. In: 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), Edmonton, Canada (August 2015)
DeFi Cartel: Salmonella (2022). http://github.com/Defi-Cartel/salmonella
Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart contracts. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 303–312 (2017)
Ethereum Foundation: ERC-20 token standard (2022). http://ethereum.org/en/developers/docs/standards/tokens/erc-20/
Ethereum Foundation: Gas and fees (2022). http://ethereum.org/en/developers/docs/gas
Ethereum Foundation: The merge (2022). http://ethereum.org/en/upgrades/merge/
Ethereum Foundation: Sharding (2022). http://ethereum.org/en/upgrades/sharding/
Ferretti, S., D’Angelo, G.: On the ethereum blockchain structure: a complex networks theory perspective. Conc. Comput. Practice Exper. 32(12), e5493 (2020)
Gelashvili, R., et al.: Block-stm: scaling blockchain execution by turning ordering curse to a performance blessing. arXiv preprint arXiv:2203.06871 (2022)
Guo, D., Dong, J., Wang, K.: Graph structure and statistical properties of ethereum transaction relationships. Inf. Sci. 492, 58–71 (2019)
Han, R., Yu, J., Zhang, R.: Analysing and improving shard allocation protocols for sharded blockchains. Cryptology ePrint Archive (2020)
He, N., et al.: Understanding the evolution of blockchain ecosystems: a longitudinal measurement study of bitcoin, ethereum, and eosio. arXiv preprint arXiv:2110.07534 (2021)
Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum: scalable, private smart contracts. In: 27th USENIX Security Symposium (USENIX Security 2018), pp. 1353–1370 (2018)
Kondor, D., Pósfai, M., Csabai, I., Vattay, G.: Do the rich get richer? an empirical analysis of the bitcoin transaction network. PLoS ONE 9(2), e86197 (2014)
ledgerwatch: Erigon (2022). http://github.com/ledgerwatch/erigon
Lin, D., Chen, J., Wu, J., Zheng, Z.: Evolution of ethereum transaction relationships: toward understanding global driving factors from microscopic patterns. IEEE Trans. Comput. Social Syst. 9(2), 559–570 (2021)
Lin, D., Wu, J., Yuan, Q., Zheng, Z.: Modeling and understanding ethereum transaction records via a complex network approach. IEEE Trans. Circuits Syst. II Express Briefs 67(11), 2737–2741 (2020)
Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 17–30 (2016)
Motamed, A.P., Bahrak, B.: Quantitative analysis of cryptocurrencies transaction graph. Appli. Netw. Sci. 4(1), 1–21 (2019)
Murgia, M., Galletta, L., Bartoletti, M.: A theory of transaction parallelism in blockchains. Logical Methods Comput. Sci. 17 (2021)
Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev., 21260 (2008)
Optimism Foundation: Optimism (2022). http://www.optimism.io
Pîrlea, G., Kumar, A., Sergey, I.: Practical smart contract sharding with ownership and commutativity analysis. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, pp. 1327–1341 (2021)
Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2016)
Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_2
Saraph, V., Herlihy, M.: An empirical study of speculative concurrency in ethereum smart contracts. arXiv preprint arXiv:1901.01376 (2019)
Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 478–493. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_30
Uniswap Labs: Ether (2022). http://info.uniswap.org/#/tokens/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
U.S. Bureau of Labor Statistics: Schedule of releases for the consumer price index (2022). http://www.bls.gov/schedule/news_release/cpi.htm
Wang, G., Shi, Z.J., Nixon, M., Han, S.: SoK: sharding on blockchain. In: Proceedings of the 1st ACM Conference on Advances in Financial Technologies, pp. 41–61 (2019)
Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151(2014), 1–32 (2014)
Xie, Y., Jin, J., Zhang, J., Yu, S., Xuan, Q.: Temporal-amount snapshot multigraph for ethereum transaction tracking. In: Dai, H.-N., Liu, X., Luo, D.X., Xiao, J., Chen, X. (eds.) BlockSys 2021. CCIS, vol. 1490, pp. 133–146. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-7993-3_10
Xie, Y., et al.: Understanding ethereum transactions via network approach. In: Xuan, Q., Ruan, Z., Min, Y. (eds.) Graph Data Mining. BDM, pp. 155–176. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-2609-8_7
Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: scaling blockchain via full sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 931–948 (2018)
Zanelatto Gavião Mascarenhas, J., Ziviani, A., Wehmuth, K., Vieira, A.B.: On the transaction dynamics of the ethereum-based cryptocurrency. J. Complex Netw. 8(4), cnaa042 (2020)
Zhang, A., Zhang, K.: Enabling concurrency on smart contracts using multiversion ordering. In: Cai, Y., Ishikawa, Y., Xu, J. (eds.) APWeb-WAIM 2018. LNCS, vol. 10988, pp. 425–439. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96893-3_32
Zhao, L., Sen Gupta, S., Khan, A., Luo, R.: Temporal analysis of the entire ethereum blockchain network. In: Proceedings of the Web Conference 2021, pp. 2258–2269 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix
Appendix
See the full version of the paper at https://fc23.ifca.ai/preproceedings/136.pdf.
Rights and permissions
Copyright information
© 2024 International Financial Cryptography Association
About this paper
Cite this paper
Heimbach, L., Kniep, Q., Vonlanthen, Y., Wattenhofer, R. (2024). DeFi and NFTs Hinder Blockchain Scalability. In: Baldimtsi, F., Cachin, C. (eds) Financial Cryptography and Data Security. FC 2023. Lecture Notes in Computer Science, vol 13951. Springer, Cham. https://doi.org/10.1007/978-3-031-47751-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-47751-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47750-8
Online ISBN: 978-3-031-47751-5
eBook Packages: Computer ScienceComputer Science (R0)