Skip to main content

DeFi and NFTs Hinder Blockchain Scalability

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2023)

Abstract

Many classical blockchains are known to have an embarrassingly low transaction throughput, down to Bitcoin’s notorious seven transactions per second limit. Various proposals and implementations for increasing throughput emerged in the first decade of blockchain research. But how much concurrency is possible? In their early days, blockchains were mostly used for simple transfers from user to user. More recently, however, decentralized finance (DeFi) and NFT marketplaces have completely changed what is happening on blockchains. Both are built using smart contracts and have gained significant popularity. Transactions on DeFi and NFT marketplaces often interact with the same smart contracts. We believe this development has transformed blockchain usage. In our work, we perform a historical analysis of Ethereum’s transaction graph. We study how much interaction between transactions there was historically and how much there is now. We find that the rise of DeFi and NFT marketplaces has led to an increase in “centralization” in the transaction graph. More transactions are now interconnected: currently, there are around 200 transactions per block with 4000 interdependencies between them. We further find that the parallelizability of Ethereum’s current interconnected transaction workload is limited. A speedup exceeding a factor of five is currently unrealistic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Measured by total fees users are willing to pay to use the blockchain (see https://cryptofees.info) Ethereum is orders of magnitude more popular than other smart contract-enabled blockchains, such as Avalanche and Cardano.

  2. 2.

    Note that the disentanglement does not impact the size of the heaviest transaction, and neither the total gas of a block.

References

  1. Amiri, M.J., Agrawal, D., El Abbadi, A.: Parblockchain: leveraging transaction parallelism in permissioned blockchain systems. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1337–1347. IEEE (2019)

    Google Scholar 

  2. Anjana, P.S., Kumari, S., Peri, S., Rathor, S., Somani, A.: Optsmart: a space efficient optimistic concurrent execution of smart contracts. Distributed and Parallel Databases, pp. 1–53 (2022)

    Google Scholar 

  3. Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R.: Divide and scale: formalization of distributed ledger sharding protocols. arXiv preprint arXiv:1910.10434 (2019)

  4. Bai, Q., Zhang, C., Xu, Y., Chen, X., Wang, X.: Evolution of ethereum: a temporal graph perspective. arXiv preprint arXiv:2001.05251 (2020)

  5. Buterin, V., Swende, M.: Eip-2929: gas cost increases for state access opcodes (2022). http://eips.ethereum.org/EIPS/eip-2929

  6. Buterin, V., Swende, M.: Eip-2930: Optional access lists (2022). http://eips.ethereum.org/EIPS/eip-2930

  7. Cavicchioli, M.: Ethereum will reach 100,000 transactions per second (2022). http://en.cryptonomist.ch/2022/07/22/ethereum-reach-100000-transactions-second/

  8. Chen, T., et al.: Dataether: data exploration framework for ethereum. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1369–1380. IEEE (2019)

    Google Scholar 

  9. Chen, Y., Guo, Z., Li, R., Chen, S., Zhou, L., Zhou, Y., Zhang, X.: Forerunner: constraint-based speculative transaction execution for ethereum. In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, pp. 570–587 (2021)

    Google Scholar 

  10. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards scaling blockchain systems via sharding. In: Proceedings of the 2019 International Conference on Management of Data, pp. 123–140 (2019)

    Google Scholar 

  11. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin duplex micropayment channels. In: 17th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), Edmonton, Canada (August 2015)

    Google Scholar 

  12. DeFi Cartel: Salmonella (2022). http://github.com/Defi-Cartel/salmonella

  13. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart contracts. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 303–312 (2017)

    Google Scholar 

  14. Ethereum Foundation: ERC-20 token standard (2022). http://ethereum.org/en/developers/docs/standards/tokens/erc-20/

  15. Ethereum Foundation: Gas and fees (2022). http://ethereum.org/en/developers/docs/gas

  16. Ethereum Foundation: The merge (2022). http://ethereum.org/en/upgrades/merge/

  17. Ethereum Foundation: Sharding (2022). http://ethereum.org/en/upgrades/sharding/

  18. Ferretti, S., D’Angelo, G.: On the ethereum blockchain structure: a complex networks theory perspective. Conc. Comput. Practice Exper. 32(12), e5493 (2020)

    Article  Google Scholar 

  19. Gelashvili, R., et al.: Block-stm: scaling blockchain execution by turning ordering curse to a performance blessing. arXiv preprint arXiv:2203.06871 (2022)

  20. Guo, D., Dong, J., Wang, K.: Graph structure and statistical properties of ethereum transaction relationships. Inf. Sci. 492, 58–71 (2019)

    Article  MathSciNet  Google Scholar 

  21. Han, R., Yu, J., Zhang, R.: Analysing and improving shard allocation protocols for sharded blockchains. Cryptology ePrint Archive (2020)

    Google Scholar 

  22. He, N., et al.: Understanding the evolution of blockchain ecosystems: a longitudinal measurement study of bitcoin, ethereum, and eosio. arXiv preprint arXiv:2110.07534 (2021)

  23. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbitrum: scalable, private smart contracts. In: 27th USENIX Security Symposium (USENIX Security 2018), pp. 1353–1370 (2018)

    Google Scholar 

  24. Kondor, D., Pósfai, M., Csabai, I., Vattay, G.: Do the rich get richer? an empirical analysis of the bitcoin transaction network. PLoS ONE 9(2), e86197 (2014)

    Article  Google Scholar 

  25. ledgerwatch: Erigon (2022). http://github.com/ledgerwatch/erigon

  26. Lin, D., Chen, J., Wu, J., Zheng, Z.: Evolution of ethereum transaction relationships: toward understanding global driving factors from microscopic patterns. IEEE Trans. Comput. Social Syst. 9(2), 559–570 (2021)

    Article  Google Scholar 

  27. Lin, D., Wu, J., Yuan, Q., Zheng, Z.: Modeling and understanding ethereum transaction records via a complex network approach. IEEE Trans. Circuits Syst. II Express Briefs 67(11), 2737–2741 (2020)

    Google Scholar 

  28. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 17–30 (2016)

    Google Scholar 

  29. Motamed, A.P., Bahrak, B.: Quantitative analysis of cryptocurrencies transaction graph. Appli. Netw. Sci. 4(1), 1–21 (2019)

    Google Scholar 

  30. Murgia, M., Galletta, L., Bartoletti, M.: A theory of transaction parallelism in blockchains. Logical Methods Comput. Sci. 17 (2021)

    Google Scholar 

  31. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev., 21260 (2008)

    Google Scholar 

  32. Optimism Foundation: Optimism (2022). http://www.optimism.io

  33. Pîrlea, G., Kumar, A., Sergey, I.: Practical smart contract sharding with ownership and commutativity analysis. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, pp. 1327–1341 (2021)

    Google Scholar 

  34. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2016)

    Google Scholar 

  35. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_2

    Chapter  Google Scholar 

  36. Saraph, V., Herlihy, M.: An empirical study of speculative concurrency in ethereum smart contracts. arXiv preprint arXiv:1901.01376 (2019)

  37. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 478–493. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_30

    Chapter  Google Scholar 

  38. Uniswap Labs: Ether (2022). http://info.uniswap.org/#/tokens/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2

  39. U.S. Bureau of Labor Statistics: Schedule of releases for the consumer price index (2022). http://www.bls.gov/schedule/news_release/cpi.htm

  40. Wang, G., Shi, Z.J., Nixon, M., Han, S.: SoK: sharding on blockchain. In: Proceedings of the 1st ACM Conference on Advances in Financial Technologies, pp. 41–61 (2019)

    Google Scholar 

  41. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

    Google Scholar 

  42. Xie, Y., Jin, J., Zhang, J., Yu, S., Xuan, Q.: Temporal-amount snapshot multigraph for ethereum transaction tracking. In: Dai, H.-N., Liu, X., Luo, D.X., Xiao, J., Chen, X. (eds.) BlockSys 2021. CCIS, vol. 1490, pp. 133–146. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-7993-3_10

    Chapter  Google Scholar 

  43. Xie, Y., et al.: Understanding ethereum transactions via network approach. In: Xuan, Q., Ruan, Z., Min, Y. (eds.) Graph Data Mining. BDM, pp. 155–176. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-2609-8_7

    Chapter  Google Scholar 

  44. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: scaling blockchain via full sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 931–948 (2018)

    Google Scholar 

  45. Zanelatto Gavião Mascarenhas, J., Ziviani, A., Wehmuth, K., Vieira, A.B.: On the transaction dynamics of the ethereum-based cryptocurrency. J. Complex Netw. 8(4), cnaa042 (2020)

    Google Scholar 

  46. Zhang, A., Zhang, K.: Enabling concurrency on smart contracts using multiversion ordering. In: Cai, Y., Ishikawa, Y., Xu, J. (eds.) APWeb-WAIM 2018. LNCS, vol. 10988, pp. 425–439. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96893-3_32

    Chapter  Google Scholar 

  47. Zhao, L., Sen Gupta, S., Khan, A., Luo, R.: Temporal analysis of the entire ethereum blockchain network. In: Proceedings of the Web Conference 2021, pp. 2258–2269 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lioba Heimbach .

Editor information

Editors and Affiliations

Appendix

Appendix

See the full version of the paper at https://fc23.ifca.ai/preproceedings/136.pdf.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heimbach, L., Kniep, Q., Vonlanthen, Y., Wattenhofer, R. (2024). DeFi and NFTs Hinder Blockchain Scalability. In: Baldimtsi, F., Cachin, C. (eds) Financial Cryptography and Data Security. FC 2023. Lecture Notes in Computer Science, vol 13951. Springer, Cham. https://doi.org/10.1007/978-3-031-47751-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47751-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47750-8

  • Online ISBN: 978-3-031-47751-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics