Skip to main content

Synchronous Perfectly Secure Message Transmission with Optimal Asynchronous Fallback Guarantees

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13950))

Included in the following conference series:

Abstract

Secure message transmission (SMT) constitutes a fundamental network-layer building block for distributed protocols over incomplete networks. More specifically, a sender \(\textbf{S}\) and a receiver \(\textbf{R}\) are connected via \(\ell \) disjoint paths, a subset of which are controlled by the adversary.

Perfectly-secure SMT protocols in synchronous and asynchronous networks are resilient up to \(\ell /2\) and \(\ell /3\) corruptions respectively. In this work, we ask whether it is possible to achieve a perfect SMT protocol that simultaneously tolerates \(t_s < \ell /2\) corruptions when the network is synchronous, and \(t_a < \ell /3\) when the network is asynchronous.

We completely resolve this question by showing that perfect SMT is possible if and only if \(2t_a + t_s < \ell \). In addition, we provide a concretely round-efficient solution for the (slightly worse) trade-off \(t_a + 2t_s < \ell \).

As a direct application of these results, following the recent work by Appan, Chandramouli, and Choudhury [PODC’22], we obtain an n-party perfectly-secure multi-party computation protocol with asynchronous fallback over any network with connectivity \(\ell \), as long as \(t_a + 3t_s <n\) and \(2t_a + t_s < \ell \).

C.-D. Liu-Zhang—This work was partially carried out while the author was at Carnegie Mellon University, USA. Supported in part by the NSF award 1916939, DARPA SIEVE program, a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC center for financial services innovation award, and a Cylab seed funding award.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This trade-off is worse given that \(t_a \le t_s\). Note that any protocol with asynchronous security is also secure when run over a synchronous network.

  2. 2.

    By requiring the distributions \(T_{\mathcal {I}, m}^k\) and \(T_{\mathcal {I}, m'}^k\) to be statistically close or computationally indistinguishable one obtains the notion of statistical security and computational security. In this paper, we are only concerned with perfect security.

References

  1. Appan, A., Chandramouli, A., Choudhury, A.: Perfectly- secure synchronous MPC with asynchronous fallback guarantees. In: ACM Symposium on Principles of Distributed Computing (2022)

    Google Scholar 

  2. Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous fallback guarantees. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 131–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_6

    Chapter  Google Scholar 

  3. Blum, E., Katz, J., Loss, J.: Tardigrade: an atomic broadcast protocol for arbitrary network conditions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 547–572. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3_19

    Chapter  Google Scholar 

  4. Blum, E., Liu-Zhang, C.-D., Loss, J.: Always have a backup plan: fully secure synchronous MPC with asynchronous fallback. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 707–731. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_25

    Chapter  Google Scholar 

  5. Choudhury, A., et al.: Secure message transmission in asynchronous networks. J. Parallel Distrib. Comput. 71, 1067–1074 (2011)

    Article  MATH  Google Scholar 

  6. Deligios, G., Hirt, M., Liu-Zhang, C.-D.: Round-efficient Byzantine agreement and multi-party computation with asynchronous fallback. In: Nissim, K., Waters, B. (eds.) TCC 2021. LNCS, vol. 13042, pp. 623–653. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90459-3_21

    Chapter  Google Scholar 

  7. Deligios, G., Liu-Zhang, C.-D.: Synchronous perfectly secure message transmission with optimal asynchronous fallback guarantees. Cryptology ePrint Archive, Paper 2022/1397. https://eprint.iacr.org/2022/1397.2022

  8. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_33

    Chapter  Google Scholar 

  9. Dolev, D., et al.: Perfectly secure message transmission. J. ACM 40(1), 17–47 (1993)

    Google Scholar 

  10. Garay, J., Givens, C., Ostrovsky, R.: Secure message transmission by public discussion: a brief survey. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 126–141. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_8

    Chapter  Google Scholar 

  11. Ghinea, D., Liu-Zhang, C.-D., Wattenhofer, R.: Optimal synchronous approximate agreement with asynchronous fallback. In: ACM Symposium on Principles of Distributed Computing. Springer (2022)

    Google Scholar 

  12. Kishore, R., Inumella, A., Srinathan, K.: Perfectly secure message transmission over partially synchronous networks. In: ICDCN 2019, Bangalore, India, pp. 302–306. Association for Computing Machinery (2019). isbn: 9781450360944. https://doi.org/10.1145/3288599.3288612

  13. Kurosawa, K., Suzuki, K.: Almost secure (1-round, n-channel) message transmission scheme. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(1), 105–112 (2009)

    Google Scholar 

  14. Kurosawa, K., Suzuki, K.: Truly efficient 2-round perfectly secure message transmission scheme. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 324–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_19

    Chapter  Google Scholar 

  15. Menger, K.: Zur allgemeinen kurventheorie. Fund. Math. 10, 96–1159 (1927)

    Article  MATH  Google Scholar 

  16. Momose, A., Ren, L.: Multi-threshold Byzantine fault tolerance. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, CCS 2021, Virtual Event, Republic of Korea, pp. 1686–1699. Association for Computing Machinery (2021). isbn: 9781450384544. https://doi.org/10.1145/3460120.3484554

  17. Resch, N., Yuan, C.: Two-round perfectly secure message transmission with optimal transmission rate. Cryptology ePrint Archive, Report 2021/158 (2021)

    Google Scholar 

  18. Md Sayeed, H., Abu-Amara, H.: Efficient perfectly secure message transmission in synchronous networks. Inf. Comput. 126(1), 53–61 (1996)

    Google Scholar 

  19. Spini, G., Zémor, G.: Perfectly secure message transmission in two rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 286–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_12

    Chapter  Google Scholar 

  20. Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal perfectly secure message transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_33

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Martin Hirt for some very insightful discussions related to the material in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Deligios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deligios, G., Liu-Zhang, CD. (2024). Synchronous Perfectly Secure Message Transmission with Optimal Asynchronous Fallback Guarantees. In: Baldimtsi, F., Cachin, C. (eds) Financial Cryptography and Data Security. FC 2023. Lecture Notes in Computer Science, vol 13950. Springer, Cham. https://doi.org/10.1007/978-3-031-47754-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47754-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47753-9

  • Online ISBN: 978-3-031-47754-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics