Skip to main content

An Efficient Facial Verification System for Surveillance that Automatically Selects a Lightweight CNN Method and Utilizes Super-Resolution Images

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14391))

Included in the following conference series:

  • 589 Accesses

Abstract

In the last decade, facial recognition and verification methods have been extensively used for surveillance and security purposes. However, most of the time, recognizing and/or verifying faces is challenging due to the low facial resolution of the obtained or captured images. Likewise, low-resolution facial images contain different facial features, such as variations in pose, lighting, resolution, and camera-to-subject distance. Moreover, the methods commonly used for facial verification in images are based on deep architectures, which rely on complex deep learning models with promising verification results but come with high computational costs. On the other hand, real-world requirements for facial verification demand lightweight methods that are inspired by their counterparts but are also compact and efficient enough to be used in unrestricted scenarios, such as video surveillance or security cameras. This paper proposes a lightweight facial verification system (LFVS) that automatically selects a lightweight facial verification method based on images characteristics, such as facial rotation variations and low resolutions. Additionally, a dynamic scaling approach is proposed to upscale images to the required size. The system uses this scaling to enhance the image resolution and succeeded in improving facial verification performance. Experimental results demonstrated that the lightweight facial verification system achieved better results when using super-resolution images in low-resolution reference points, with minimal memory usage and computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haji, S., Varol, A.: Real time face recognition system (RTFRS). In: 2016 4th International Symposium on Digital Forensic and Security (ISDFS), pp. 107–111, Little Rock, AR, USA. IEEE (2016)

    Google Scholar 

  2. Kortli, Y., Jridi, M., Al Falou, A., Atri, M.: Face recognition systems: a survey. Sensors 20(2), 342 (2020)

    Article  Google Scholar 

  3. de Freitas Pereira, T., Schmidli, D., Linghu, Y., Zhang, X., Marcel, S., Günther, M.: Eight Years of Face Recognition Research: Reproducibility, Achievements and Open Issues. arXiv, no. 2208.04040 (2022)

    Google Scholar 

  4. Guo, G., Zhang, N.: A survey on deep learning based face recognition. Comput. Vis. Image Underst. 189, 102805 (2019)

    Article  Google Scholar 

  5. Boutros, F., Siebke, P., Klemt, M., Damer, N., Kirchbuchner, F., Kuijper, A.: Pocketnet: extreme lightweight face recognition network using neural architecture search and multistep knowledge distillation. IEEE Access 10, 46823–46833 (2022)

    Article  Google Scholar 

  6. Boutros, F., Damer, N., Kuijper, A.: QuantFace: towards lightweight face recognition by synthetic data low-bit quantization. In: 2022 26th International Conference on Pattern Recognition (ICPR), pp. 855-862, Montreal, QC, Canada. IEEE (2022)

    Google Scholar 

  7. Ghimire, A., Werghi, N., Javed, S., Dias, J.: Real-Time Face Recognition System. arXiv, no. 2204.08978 (2022)

    Google Scholar 

  8. Chen, S., Liu, Y., Gao, X., Han, Z.: MobileFaceNets: efficient CNNs for accurate real-time face verification on mobile devices. In: Zhou, J., et al. (eds.) CCBR 2018. LNCS, vol. 10996, pp. 428–438. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97909-0_46

    Chapter  Google Scholar 

  9. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: Proceedings of the 36th International Conference on Machine Learning: Proceedings of Machine Learning Research (PMLR), vol. 97, pp. 6105–6114 (2019)

    Google Scholar 

  10. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: more features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1580–1589 (2020)

    Google Scholar 

  11. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  12. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1874–1883 (2016)

    Google Scholar 

  13. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR), pp. 136–144 (2017)

    Google Scholar 

  14. Wang, Z., Zhang, J., Chen, R., Wang, W., Luo, P.: Restoreformer: high-quality blind face restoration from undegraded key-value pairs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17512–17521 (2022)

    Google Scholar 

  15. Cheng, Z., Zhu, X., Gong, S.: Surveillance face recognition challenge. arXiv, no. 1804.09691 (2022)

    Google Scholar 

  16. Perez-Montes, F., Olivares-Mercado, J., Sanchez-Perez, G., Benitez-Garcia, G., Prudente-Tixteco, L., Lopez-Garcia, O.: Analysis of real-time face-verification methods for surveillance applications. J. Imaging 9(2), 21 (2023)

    Article  Google Scholar 

  17. Zheng, T., Deng, W.: Cross-pose lfw: a database for studying cross-pose face recognition in unconstrained environments. Beijing University of Posts and Telecommunications, vol. 5, no. 7, China (2018)

    Google Scholar 

  18. Sengupta, S., Chen, J.C., Castillo, C., Patel, V.M., Chellappa, R., Jacobs, D.W.: Frontal to profile face verification in the wild. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1-9, Lake Placid, NY, USA. IEEE (2016)

    Google Scholar 

  19. Martínez-Díaz, Y., Méndez-Vázquez, H., Luevano, L.S., Chang, L., Gonzalez-Mendoza, M.: Lightweight low-resolution face recognition for surveillance applications. In: 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, pp. 5421–5428. IEEE (2021)

    Google Scholar 

  20. Martindez-Diaz, Y., et al.: Shufflefacenet: a lightweight face architecture for efficient and highly-accurate face recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops (2019)

    Google Scholar 

  21. Pranav, K.B., Manikandan, J.: Design and evaluation of a real-time face recognition system using convolutional neural networks. Procedia Comput. Sci. 171, 1651–1659 (2020)

    Article  Google Scholar 

  22. Nagrath, P., Jain, R., Madan, A., Arora, R., Kataria, P., Hemanth, J.: SSDMNV2: a real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2. Sustain. Urban Areas 66, 102692 (2021)

    Google Scholar 

  23. Hempel, T., Abdelrahman, A. A., Al-Hamadi, A.: 6d rotation representation for unconstrained head pose estimation. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 2496–2500, Bordeaux, France. IEEE (2022)

    Google Scholar 

  24. Wang, J., Liu, Y., Hu, Y., Shi, H., Mei, T.: Facex-zoo: a pytorch toolbox for face recognition. In: Proceedings of the 29th ACM International Conference on Multimedia, New York, NY, USA, pp. 3779–3782 (2021)

    Google Scholar 

  25. DeepGlint: Trillion Pairs Testing Faceset. DeepGlint, Beijing, China (2019)

    Google Scholar 

  26. Wang, X., Zhang, S., Wang, S., Fu, T., Shi, H., Mei, T.: Mis-classified vector guided softmax loss for face recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 12241–12248, USA (2020)

    Google Scholar 

  27. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors thank the Instituto Politecnico Nacional (IPN) as well as the Consejo Nacional de Humanidades Ciencia y Tecnologia de Mexico (CONAHCYT) for the support provided during the realization of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filiberto Perez-Montes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perez-Montes, F., Olivares-Mercado, J., Sanchez-Perez, G. (2024). An Efficient Facial Verification System for Surveillance that Automatically Selects a Lightweight CNN Method and Utilizes Super-Resolution Images. In: Calvo, H., Martínez-Villaseñor, L., Ponce, H. (eds) Advances in Computational Intelligence. MICAI 2023. Lecture Notes in Computer Science(), vol 14391. Springer, Cham. https://doi.org/10.1007/978-3-031-47765-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47765-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47764-5

  • Online ISBN: 978-3-031-47765-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics