Skip to main content

Implementation of Parallel Evolutionary Convolutional Neural Network for Classification in Human Activity and Image Recognition

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2023)

Abstract

Pattern recognition has been evolving to include problems posed by new sceneries containing a high number of pattern components . Processing this volume of information allows a more exact classification in wider types of applications; however, some of the difficulties of this scheme is the maintenance of numerical precision and mainly the reduction of the execution time. During the last 15 years, several Machine Learning solutions have been implemented to reduce the number of pattern components to be analyzed, such as artificial neural networks. Deep learning is an appropriate tool to accomplish this task. In this paper, a convolutional neural network is implemented for recognition and classification of human activity signals and digital images. It is achieved by automatically adjusting the parameters of the neural network through genetic algorithms using a multiprocessor and GPU platform. The results obtained show the reduction of computational costs and the possibility of better understanding of the solutions provided by Deep Learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelbaky, A., Aly, S.: Two-stream spatiotemporal feature fusion for human action recognition. Vis. Comput. 37(7), 1821–1835 (2021). https://doi.org/10.1007/s00371-020-01940-3

  2. Abebe, G., Cavallaro, A.: Inertial-vision: cross-domain knowledge transfer for wearable sensors. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1392–1400 (2017). https://doi.org/10.1109/ICCVW.2017.165

  3. Abu Alsheikh, M., Selim, A., Niyato, D., Doyle, L., Lin, S., Tan, H.: Deep activity recognition models with triaxial accelerometers. In: AAAI Conference on Artificial Intelligence. AAAI Workshop - Technical Report, vol. WS-16-01 - WS-16-15, pp. 8–13. AI Access Foundation, United States (2016)

    Google Scholar 

  4. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L., et al.: A public domain dataset for human activity recognition using smartphones. In: Esann. vol. 3, p. 3 (2013)

    Google Scholar 

  5. Avilés-Cruz, C., Ramírez, A., Zúñiga López, A., Villegas Cortez, J.: Coarse-fine convolutional deep-learning strategy for human activity recognition. Sensors 2019 (2019). https://doi.org/10.3390/s19071556

  6. Baldominos, A., Saez, Y., Isasi, P.: Evolutionary convolutional neural networks: An application to handwriting recognition. Neurocomputing 283, 38–52 (2018). https://doi.org/10.1016/j.neucom.2017.12.049, https://www.sciencedirect.com/science/article/pii/S0925231217319112

  7. Basly, H., Ouarda, W., Sayadi, F.E., Ouni, B., Alimi, A.M.: DTR-HAR: deep temporal residual representation for human activity recognition. Vis. Comput. 38, 993–1013 (2021). https://doi.org/10.1007/s00371-021-02064-y

  8. Bustoni, I.A., Hidayatulloh, I., Ningtyas, A., Purwaningsih, A., Azhari, S.: Classification methods performance on human activity recognition. J. Phys.: Conf. Series 1456, 012027 (01 2020). https://doi.org/10.1088/1742-6596/1456/1/012027

  9. Cantú-Paz, E., Goldberg, D.E.: On the scalability of parallel genetic algorithms. Evol. Comput. 7(4), 429–449 (1999). https://doi.org/10.1162/evco.1999.7.4.429

    Article  Google Scholar 

  10. Catal, C., Tufekci, S., Pirmit, E., Kocabag, G.: On the use of ensemble of classifiers for accelerometer-based activity recognition. Appl. Soft Comput. 37, 1018–1022 (2015). https://doi.org/10.1016/j.asoc.2015.01.025

    Article  Google Scholar 

  11. Chang, J.R., Chen, Y.S.: Batch-normalized maxout network in network (2015)

    Google Scholar 

  12. Chen, Z., Lin, T., Tang, N., Xia, X.: A parallel genetic algorithm based feature selection and parameter optimization for support vector machine. Sci. Program. 2016, 1–10 (2016). https://doi.org/10.1155/2016/2739621

    Article  Google Scholar 

  13. Cho, H., Yoon, S.M.: Divide and conquer-based 1D CNN human activity recognition using test data sharpening. Sensors 18(4) (2018). https://doi.org/10.3390/s18041055, https://www.mdpi.com/1424-8220/18/4/1055

  14. Cireşan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: Proceedings / CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2012). https://doi.org/10.1109/CVPR.2012.6248110

  15. Cireşan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 22(12), 3207–3220 (2010). https://doi.org/10.1162/NECO_a_00052, pMID: 20858131

  16. Davoudi, K., Thulasiraman, P.: Evolving convolutional neural network parameters through the genetic algorithm for the breast cancer classification problem. Simulation 0(0), 0037549721996031 (0). https://doi.org/10.1177/0037549721996031

  17. De Jong, K., Fogel, D., Schwefel, H.P.: A history of evolutionary computation, pp. A2.3:1–12 (1997)

    Google Scholar 

  18. Desell, T.: Developing a volunteer computing project to evolve convolutional neural networks and their hyperparameters. In: 13th IEEE International Conference on eScience (8109119), 19–28 (2017)

    Google Scholar 

  19. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  20. Graham, B.: Fractional max-pooling (2015)

    Google Scholar 

  21. Han, X., Ye, J., Luo, J., Zhou, H.: The effect of axis-wise triaxial acceleration data fusion in CNN-based human activity recognition. IEICE Trans. Inform. Syst. E103.D(4), 813–824 (2020). https://doi.org/10.1587/transinf.2018EDP7409

  22. Ignatov, A.: Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl. Soft Comput. 62, 915–922 (9 2017). https://doi.org/10.1016/j.asoc.2017.09.027

  23. Iqbal, A., et al.: Wearable internet-of-things platform for human activity recognition and health care. Int. J. Distrib. Sensor Netw. 16(6), 1550147720911561 (2020). https://doi.org/10.1177/1550147720911561

  24. Jiao, L., et al.: Golf swing classification with multiple deep convolutional neural networks. Int. J. Distrib. Sensor Netw. 14(10), 1550147718802186 (2018). https://doi.org/10.1177/1550147718802186

  25. Kwapisz, J., Weiss, G., Moore, S.: Activity recognition using cell phone accelerometers. SIGKDD Explor. 12, 74–82 (2010). https://doi.org/10.1145/1964897.1964918

  26. Lane, N., Miluzzo, E., lu, H., Peebles, D., Choudhury, T., Campbell, A.: A survey of mobile phone sensing. IEEE Commun Mag. Commun. Mag. IEEE 48, 140–150 (10 2010). https://doi.org/10.1109/MCOM.2010.5560598

  27. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998). https://doi.org/10.1109/5.726791

  28. Lee, C.Y., Gallagher, P.W., Tu, Z.: Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. ArXiv:1509.08985 (2016)

  29. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition, pp. 3367–3375 (2015). https://doi.org/10.1109/CVPR.2015.7298958

  30. Liao, Z., Carneiro, G.: Competitive multi-scale convolution (2015)

    Google Scholar 

  31. Liao, Z., Carneiro, G.: On the importance of normalisation layers in deep learning with piecewise linear activation units, pp. 1–8 (2016). https://doi.org/10.1109/WACV.2016.7477624

  32. Liu, C., Ying, J., Yang, H., Hu, X., Liu, J.: Improved human action recognition approach based on two-stream convolutional neural network model. Vis. Comput. 37(6), 1327–1341 (2021). https://doi.org/10.1007/s00371-020-01868-8

  33. Liu, Y., Tian, M., Xu, C., Zhao, L.: Neural network feature learning based on image self-encoding. Int. J. Adv. Robot. Syst. 17(2), 1729881420921653 (2020). https://doi.org/10.1177/1729881420921653

  34. Lockhart, J., Weiss, G., Xue, J., Gallagher, S., Grosner, A., Pulickal, T.: Design considerations for the WISDM smart phone-based sensor mining architecture. SensorKDD 11 (2011). https://doi.org/10.1145/2003653.2003656

  35. Martinez, F., González-Fraga, J., Cuevas-Tello, J.C., Rodriguez, M.: Activity inference for ambient intelligence through handling artifacts in a healthcare environment. Sensors (Basel, Switzerland) 12, 1072–1099 (2012). https://doi.org/10.3390/s120101072

  36. Quaid, M.A., Jalal, A.: Wearable sensors based human behavioral pattern recognition using statistical features and reweighted genetic algorithm. Multimed. Tools Appl. 79, 6061–6083 (2019). https://doi.org/10.1007/s11042-019-08463-7

  37. Ranasinghe, S., Machot, F.A., Mayr, H.C.: A review on applications of activity recognition systems with regard to performance and evaluation. Int. J. Distrib. Sensor Netw. 12(8), 1550147716665520 (2016). https://doi.org/10.1177/1550147716665520

  38. Ravì, D., Wong, C., Lo, B., Yang, G.Z.: A deep learning approach to on-node sensor data analytics for mobile or wearable devices. IEEE J. Biomed. Health Inform. 21(1), 56–64 (2016). https://doi.org/10.1109/JBHI.2016.2633287

  39. Ravì, D., Wong, C., Lo, B., Yang, G.Z.: Deep learning for human activity recognition: A resource efficient implementation on low-power devices, pp. 71–76 (06 2016). https://doi.org/10.1109/BSN.2016.7516235

  40. Reyes-Ortiz, J., Oneto, L., Ghio, A., Anguita, D., Parra, X.: Human activity recognition on smartphones with awareness of basic activities and postural transitions (2014)

    Google Scholar 

  41. Ronao, C., Cho, S.B.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016). https://doi.org/10.1016/j.eswa.2016.04.032

  42. San-Segundo, R., Lorenzo-Trueba, J., Martínez-González, B., Pardo, J.: Segmenting human activities based on HMMs using smartphone inertial sensors. Pervasive Mobile Comput. 30, 84–96 (2016). https://doi.org/10.1016/j.pmcj.2016.01.004

  43. Sato, I., Nishimura, H., Yokoi, K.: APAC: augmented pattern classification with neural networks (2015)

    Google Scholar 

  44. Shakya, S., Zhang, C., Zhou, Z.: Comparative study of machine learning and deep learning architecture for human activity recognition using accelerometer data. Int. J. Mach. Learn. Comput. 8 (2018). https://doi.org/10.18178/ijmlc.2018.8.6.748

  45. Stisen, A., et al.: Smart devices are different: assessing and mitigatingmobile sensing heterogeneities for activity recognition, pp. 127–140 (2015)

    Google Scholar 

  46. Uddin, M.T., Billah, M.M., Hossain, M.F.: Random forests based recognition of human activities and postural transitions on smartphone. In: 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), pp. 250–255 (2016)

    Google Scholar 

  47. Walse, K., Dharaskar, R., Thakare, V.M.: Performance evaluation of classifiers on WISDM dataset for human activity recognition (2016). https://doi.org/10.1145/2905055.2905232

  48. Wan, L., Zeiler, M., Zhang, S., Lecun, Y., Fergus, R.: Regularization of neural networks using dropconnect (2013)

    Google Scholar 

  49. Weiss, G., Lockhart, J.: The impact of personalization on smartphone-based activity recognition. In: AAAI Workshop - Technical Report (2012)

    Google Scholar 

  50. Xu, Y., et al.: Learning multi-level features for sensor-based human action recognition. Pervasive Mobile Comput. 40, 324—338 (2016). https://doi.org/10.1016/j.pmcj.2017.07.001

  51. Zhang, H., Xiao, Z., Wang, J., Li, F., Szczerbicki, E.: A novel IoT-perceptive human activity recognition (HAR) approach using multi-head convolutional attention. IEEE Int. Things J. 7(2), 1072–1080 (2019). https://doi.org/10.1109/JIOT.2019.2949715

  52. Zhang, Y., Zhang, Y., Zhang, Z., Bao, J., Song, Y.: Human activity recognition based on time series analysis using U-Net (2018)

    Google Scholar 

  53. Zheng, Z., Du, J., Sun, L., Huo, M., Chen, Y.: TASG: an augmented classification method for impersonal HAR. Mobile Inform. Syst. 1–10 (2018)

    Google Scholar 

  54. Zhu, X., Qiu, H.: High accuracy human activity recognition based on sparse locality preserving projections. PLOS ONE 11(11), 1–18 (2016). https://doi.org/10.1371/journal.pone.0166567, https://doi.org/10.1371/journal.pone.0166567

Download references

Acknowledgements

We acknowledge the support of Project PID2020-115570GB-C21 funded by MCIN/AIE/10.13039/501100011033/ and Junta de Extremadura, Consejería de Economía e Infraestructuras, of the European Regional Development Fund, “Una manera de hacer Europa”, grant GR21108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Villegas-Cortez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Villegas-Cortez, J., Román-Alonso, G., Fernandez De Vega, F., Flores-Morales, Y.A., Cordero-Sanchez, S. (2024). Implementation of Parallel Evolutionary Convolutional Neural Network for Classification in Human Activity and Image Recognition. In: Calvo, H., Martínez-Villaseñor, L., Ponce, H. (eds) Advances in Computational Intelligence. MICAI 2023. Lecture Notes in Computer Science(), vol 14391. Springer, Cham. https://doi.org/10.1007/978-3-031-47765-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47765-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47764-5

  • Online ISBN: 978-3-031-47765-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics