Skip to main content

Multiresolution Controller Based on Window Function Networks for a Quanser Helicopter

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2023)

Abstract

To improve neural network (NN) performance, new activation functions, such as ReLU, GELU, and SELU, to name a few, have been proposed. Windows-based functions, such as flat-top or atomic functions, used in processing signals have begun to be used in NNs for dynamical systems. Although wavelet functions are the most popular, some additional functions with similar properties must be evaluated. This paper presents a window function neural network (WFNN) for identification tasks. Using the identification by WFNN, the self-tuning gains of the proportional multi-resolution (PMR) controller are carried out. To show the performance of the proposed approach for different window functions, numerical simulations of the Quanser helicopter of 2 degrees of freedom are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Determination coefficient is defined as \(R^2=1 - \text {RSS}/\text {TSS}\) where the \(\text {RSS} = \sum (y_{d_i} - \hat{y}_i)^2\) is the residual sum of squares, the \(\text {TSS} = \sum (y_{d_i} - \bar{y}_i)^2\) is the total sum of squares, and \(\bar{y}_i\) is the average of desired positions for each axis [8].

References

  1. Bernard, C.P., Slotine, J.E.: Adaptive control with multiresolution bases. In: Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, USA, 1997, vol. 4, pp. 3884–3889 (1997). https://doi.org/10.1109/CDC.1997.652468

  2. Chen, S., Billings, S.A.: Neural networks for nonlinear dynamic system modelling and identification. Int. J. Control 56(2), 319–346 (1992). https://doi.org/10.1080/00207179208934317

    Article  MathSciNet  MATH  Google Scholar 

  3. Díaz López, F.A., Ramos Velasco, L.E., Domínguez Ramírez, O.A., Parra Vega, V.: Multiresolution wavenet PID control for global regulation of robots. In: 9th Asian Control Conference (ASCC 2013), 23–26 June 2013, Istanbul, Turkey, pp. 1–6. IEEE (2013). https://doi.org/10.1109/ASCC.2013.6606328

  4. Feng, J., Lu, S.: Performance analysis of various activation functions in artificial neural networks. J. Phys. Conf. Ser. 1237(2), 022030 (2019). https://doi.org/10.1088/1742-6596/1237/2/022030

  5. Garcia-Castro, O.F., et al.: RBF neural network based on FT-windows for auto-tunning PID controller. In: Advances in Computational Intelligence, pp. 138–149. Springer Nature, Switzerland (2022). https://doi.org/10.1007/978-3-031-19493-1_11

  6. Hernandez-Matamoros, A., Hujita, H., Escamilla-Hernandez, E., Perez-Meana, H., Nakano-Miyatake, M.: Recognition of ECG signals using wavelet based on atomic functions. Elsevier BV 40(2), 803–814 (2020). https://doi.org/10.1016/j.bbe.2020.02.007

    Article  Google Scholar 

  7. Inc., Q.: User manual 2 DOF helicopter experiment, set up and configuration. Markham, Ontario (2012)

    Google Scholar 

  8. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. STS, vol. 103. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  9. Jeevan, L.G., Malik, V.: A wavelet based multiresolution controller. J. Emerg. Trends Comput. Inf. Sci. 2(Special Issue), 17–21 (2010)

    Google Scholar 

  10. Lindemann, S.R., LaValle, S.M.: Multiresolution approach for motion planning under differential constraints. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, Orlando, FL, USA, pp. 139–144 (2006). https://doi.org/10.1109/ROBOT.2006.1641174

  11. Nejadpak, A., Mohamed, A., Mohammed, O.A.: A wavelet based multi-resolution controller for sensorless position control of PM synchronous motors at low speed. In: 2011 IEEE International Electric Machines & Drives Conference (IEMDC). IEEE (2011). https://doi.org/10.1109/iemdc.2011.5994913

  12. Parvez, S., Gao, Z.: A wavelet-based multiresolution PID controller. IEEE Trans. Ind. Appl. 41(2), 537–543 (2005). https://doi.org/10.1109/TIA.2005.844378

    Article  Google Scholar 

  13. Prabhu, K.M.M.: Window Functions and Their Applications in Signal Processing. Taylor & Francis Group (2018). https://doi.org/10.1201/9781315216386

  14. Reljin, I.S., Reljin, B.D., Papic, V.: Extremely flat-top windows for harmonic analysis. IEEE Trans. Instrum. Meas. 56(3), 1025–1041 (2007)

    Article  Google Scholar 

  15. Vega-Navarrete, M.A., et. al.: Output feedback self-tuning wavenet control for underactuated euler-lagrange systems. IFAC-PapersOnLine 51(13), 633–638 (2018). https://doi.org/10.1016/j.ifacol.2018.07.351

  16. Vetterli, M., Kovačević, J.: Wavelets and Subband Coding. Prentice-hall (1995)

    Google Scholar 

  17. Yamaoka, T., Kageme, S.: New class of cosine-sum windows. IEEE Access 11, 5296–5305 (2023). https://doi.org/10.1109/ACCESS.2023.3236606

    Article  Google Scholar 

  18. Zhang, P., Daraz, A., Malik, S.A., Sun, C., Basit, A., Zhang, G.: Multi-resolution based PID controller for frequency regulation of a hybrid power system with multiple interconnected systems. Front. Energy Res. 10 (2023). https://doi.org/10.3389/fenrg.2022.1109063

  19. Zhang, Q., Benveniste, A.: Wavelet networks. IEEE Trans. Neural Networks 3(6), 889–898 (1992). https://doi.org/10.1109/72.165591

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Consejo Nacional de Humanidades Ciencia y Tecnología (CONAHCYT) under reference number 1148156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Federico Garcia-Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garcia-Castro, O.F., Ramos-Velasco, L.E., Garcia-Rodriguez, R., Vega-Navarrete, M.A., Escamilla-Hernández, E. (2024). Multiresolution Controller Based on Window Function Networks for a Quanser Helicopter. In: Calvo, H., Martínez-Villaseñor, L., Ponce, H. (eds) Advances in Computational Intelligence. MICAI 2023. Lecture Notes in Computer Science(), vol 14391. Springer, Cham. https://doi.org/10.1007/978-3-031-47765-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47765-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47764-5

  • Online ISBN: 978-3-031-47765-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics