Skip to main content

Neural Drone Racer Mentored by Classical Controllers

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14391))

Included in the following conference series:

  • 290 Accesses

Abstract

The autonomous drone race has driven the development of various approaches to agile flight involving perception, planning and control. The latter is most effective when using external information such as high-frequency drone position. On the other hand, deep learning-based methods propose to train an artificial pilot to learn to associate sensory data with flight commands using only visual information. In this paper, we propose an approach for developing a neural drone racer based on the mentoring of three classical flight controllers combined with visual information. We performed a comparison of the three trained models. Our results demonstrated an improvement in navigation behaviour and increased the speed to complete a racetrack by a factor of 7 compared to that reported in the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available online: https://acado.github.io/,.

References

  1. Arteaga-Pérez, M.A., Gutiérrez-Giles, A.: On the GPI approach with unknown inertia matrix in robot manipulators. Int. J. Control 87(4), 844–860 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cabrera-Ponce, A.A., Rojas-Perez, L.O., Carrasco-Ochoa, J.A., Martinez-Trinidad, J.F., Martinez-Carranza, J.: Gate detection for micro aerial vehicles using a single shot detector. IEEE Lat. Am. Trans. 17(12), 2045–2052 (2019)

    Article  Google Scholar 

  3. Cocoma-Ortega, J.A., Rojas-Perez, L.O., Cabrera-Ponce, A.A., Martinez-Carranza, J.: Overcoming the blind spot in CNN-based gate detection for autonomous drone racing. In: 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), pp. 253–259. IEEE (2019)

    Google Scholar 

  4. Cocoma-Ortega, J.A., Martinez-Carranza, J.: A CNN based drone localisation approach for autonomous drone racing. In: 11th International Micro Air Vehicle Competition and Conference (2019)

    Google Scholar 

  5. Cocoma-Ortega, J.A., Martínez-Carranza, J.: Towards high-speed localisation for autonomous drone racing. In: Martínez-Villaseñor, L., Batyrshin, I., Marín-Hernández, A. (eds.) Advances in Soft Computing: 18th Mexican International Conference on Artificial Intelligence, MICAI 2019, Xalapa, Mexico, October 27 – November 2, 2019, Proceedings, pp. 740–751. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33749-0_59

    Chapter  Google Scholar 

  6. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: real-time single camera slam. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  7. Delmerico, J.A., Scaramuzza, D.: A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots. null (2018). https://doi.org/10.1109/icra.2018.8460664

  8. Fliess, M., Marquez, R., Delaleau, E., Sira-Ramírez, H.: Correcteurs proportionnels-intégraux généralisés. ESAIM: Control. Optim. Calculus Variations 7, 23–41 (2002)

    Google Scholar 

  9. Foehn, P., et al.: Alphapilot: autonomous drone racing. arXiv preprint arXiv:2005.12813 (2020)

  10. Foehn, P., Romero, A., Scaramuzza, D.: Time-optimal planning for quadrotor waypoint flight. Sci. Robot. 6(56), eabh1221 (2021)

    Google Scholar 

  11. Furrer, F., Burri, M., Achtelik, M., Siegwart, R.: RotorS—a modular gazebo MAV simulator framework. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 625, pp. 595–625. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9_23

    Chapter  Google Scholar 

  12. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  13. Jung, S., Cho, S., Lee, D., Lee, H., Shim, D.H., et al.: A direct visual servoing-based framework for the 2016 IROS autonomous drone racing challenge. J. Field Robot. 35(1), 146–166 (2018)

    Article  Google Scholar 

  14. Jung, S., Hwang, S., Shin, H., Shim, D.H., et al.: Perception, guidance, and navigation for indoor autonomous drone racing using deep learning. IEEE Robot. Autom. Lett. 3(3), 2539–2544 (2018)

    Article  Google Scholar 

  15. Jung, S., Lee, H., Hwang, S., Shim, D.H.: Real time embedded system framework for autonomous drone racing using deep learning techniques. In: 2018 AIAA Information Systems-AIAA Infotech@ Aerospace, p. 2138. Aerospace Research Central (2018)

    Google Scholar 

  16. Kaufmann, E., et al.: Beauty and the beast: Optimal methods meet learning for drone racing. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 690–696. IEEE (2019)

    Google Scholar 

  17. Kaufmann, E., Loquercio, A., Ranftl, R., Dosovitskiy, A., Koltun, V., Scaramuzza, D., et al.: Deep drone racing: Learning agile flight in dynamic environments. In: Conference on Robot Learning, pp. 133–145. PMLR (2018)

    Google Scholar 

  18. Li, S., De Wagter, C., de Visser, C., Chu, Q., de Croon, G., et al.: In-flight model parameter and state estimation using gradient descent for high-speed flight. Int. J. Micro Air Veh. 11, 1756829319833685 (2019)

    Google Scholar 

  19. Li, S., van der Horst, E., Duernay, P., De Wagter, C., de Croon, G.C., et al.: Visual model-predictive localization for computationally efficient autonomous racing of a 72-g drone. J. Field Robot. 37(4), 667–692 (2020)

    Article  Google Scholar 

  20. Li, S., Ozo, M.M., De Wagter, C., de Croon, G.C., et al.: Autonomous drone race: a computationally efficient vision-based navigation and control strategy. Robot. Auton. Syst. 133, 103621 (2020)

    Article  Google Scholar 

  21. Luukkonen, T.: Modelling and control of quadcopter. Independent Res. Project Appl. Math. Espoo 22(22) (2011)

    Google Scholar 

  22. Madaan, R., et al.: Airsim drone racing lab. In: NeurIPS 2019 Competition and Demonstration Track, pp. 177–191. PMLR (2020)

    Google Scholar 

  23. Martinez-Carranza, J., Rojas-Perez, L.O.: Warehouse inspection with an autonomous micro air vehicle. Unmanned Syst. 10(4), 329–342 (2022)

    Google Scholar 

  24. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525. IEEE (2011)

    Google Scholar 

  25. Moon, H., et al.: Challenges and implemented technologies used in autonomous drone racing. Intel. Serv. Robot. 12(2), 137–148 (2019)

    Article  Google Scholar 

  26. Mueller, M.W., Hehn, M., D’Andrea, R.: A computationally efficient motion primitive for quadrocopter trajectory generation. IEEE Trans. Rob. 31(6), 1294–1310 (2015)

    Article  Google Scholar 

  27. Mur-Artal, R., Tardós, J.D.: Orb-slam2: an open-source slam system for monocular, stereo and RGB-D cameras. IEEE Trans. Rob. (2017). https://doi.org/10.1109/tro.2017.2705103

    Article  Google Scholar 

  28. Pfeiffer, C., Scaramuzza, D.: Expertise affects drone racing performance. arXiv preprint arXiv:2109.07307 (2021)

  29. Pfeiffer, C., Scaramuzza, D.: Human-piloted drone racing: visual processing and control. IEEE Robot. Autom. Lett. 6(2), 3467–3474 (2021)

    Article  Google Scholar 

  30. Pham, H.X., Ugurlu, H.I., Le Fevre, J., Bardakci, D., Kayacan, E.: Deep learning for vision-based navigation in autonomous drone racing. In: Deep learning for robot perception and cognition, pp. 371–406. Elsevier (2022)

    Google Scholar 

  31. Rojas-Perez, L.O., Martinez-Carranza, J.: A temporal CNN-based approach for autonomous drone racing. In: 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), pp. 70–77. IEEE (2019)

    Google Scholar 

  32. Rojas-Perez, L.O., Martinez-Carranza, J.: Leveraging a neural pilot via automatic gain tuning using gate detection for autonomous drone racing. In: 13th International Micro Air Vehicle Conference at Delft, the Netherlands, pp. 110–118 (2022)

    Google Scholar 

  33. Rojas-Perez, L.O., Martínez-Carranza, J.: On-board processing for autonomous drone racing: an overview. Integration 80, 46–59 (2021)

    Article  Google Scholar 

  34. Rojas-Perez, L.O., Martinez-Carranza, J.: Deeppilot4pose: a fast pose localisation for MAV indoor flight using the oak-d camera. J. Real-Time Image Proc. 20(1), 8 (2023)

    Article  Google Scholar 

  35. Rojas-Perez, L.O., Martinez-Carranza, J.: Deeppilot: A CNN for autonomous drone racing. Sensors 20(16), 4524 (2020)

    Article  Google Scholar 

  36. Rojas-Perez, L.O., Martinez-Carranza, J.: Towards autonomous drone racing without GPU using an oak-d smart camera. Sensors 21(22), 7436 (2021)

    Article  Google Scholar 

  37. Rojas-Perez, L.O., Martinez-Carranza, J.: Where are the gates: discovering effective waypoints for autonomous drone racing. In: Advances in Artificial Intelligence-IBERAMIA 2022: 17th Ibero-American Conference on AI, Cartagena de Indias, Colombia, November 23–25, 2022, Proceedings, pp. 353–365. Springer (2023)

    Google Scholar 

  38. Romero, A., Penicka, R., Scaramuzza, D.: Time-optimal online replanning for agile quadrotor flight. IEEE Robot. Autom. Lett. 7(3), 7730–7737 (2022)

    Article  Google Scholar 

  39. Sira-Ramírez, H., Ramírez-Neria, M., Rodríguez-Angeles, A.: On the linear control of nonlinear mechanical systems. In: 49th IEEE Conference on Decision and Control (CDC), pp. 1999–2004. IEEE (2010)

    Google Scholar 

  40. Spedicato, S., Notarstefano, G.: Minimum-time trajectory generation for quadrotors in constrained environments. IEEE Trans. Control Syst. Technol. 26(4), 1335–1344 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Martinez-Carranza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rojas-Perez, L.O., Gutierrez-Giles, A., Martinez-Carranza, J. (2024). Neural Drone Racer Mentored by Classical Controllers. In: Calvo, H., Martínez-Villaseñor, L., Ponce, H. (eds) Advances in Computational Intelligence. MICAI 2023. Lecture Notes in Computer Science(), vol 14391. Springer, Cham. https://doi.org/10.1007/978-3-031-47765-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47765-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47764-5

  • Online ISBN: 978-3-031-47765-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics