Abstract
Low Rank Parity Check (LRPC) codes form a class of rank-metric error-correcting codes that was purposely introduced to design public-key encryption schemes. An LRPC code is defined from a parity check matrix whose entries belong to a relatively low dimensional vector subspace of a large finite field. This particular algebraic feature can then be exploited to correct with high probability rank errors when the parameters are appropriately chosen. In this paper, we present theoretical upper-bounds on the probability that the LRPC decoding algorithm fails.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Such t-tuples \(\boldsymbol{\textrm{a}}\) are of the form \((0,\dots ,0,a_i,\lambda _{i+1}a_i,\dots ,\lambda _ta_i)\) where i can take any value in \(\left\{ 1,\dots ,t \right\} \), \(a_i\) is any non-zero element in \(\mathcal {A}\), and \(\lambda _{i+1},\dots ,\lambda _t\) have arbitrary values in \(\mathbb {F}_q\). The number of such tuples is therefore at least \(\left( q^{d} - 1\right) \sum _{u=0}^{t-1} q^u\) because the choice over \(a_i\) can be restricted to the linear space of dimension d contained in the set \(\mathcal {A}\).
References
Melchor, C.A., et al.: Rank quasi cyclic (RQC). Second round submission to the NIST post-quantum cryptography call, April 2019
Melchor, C.A., Aragon, N., Dyseryn, V., Gaborit, P., Zémor, G.: LRPC codes with multiple syndromes: near ideal-size KEMs without ideals. ArXiv, abs/2206.11961 (2022)
Aragon, N., et al.: ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER). Second round submission to the NIST post-quantum cryptography call, March 2019
Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Low rank parity check codes: new decoding algorithms and applications to cryptography. IEEE Trans. Inform. Theory 65(12), 7697–7717 (2019)
Burle, É., Gaborit, P., Hatri, Y., Otmani, A.: Rank metric trapdoor functions with homogeneous errors. In: AlTawy, R., Hülsing, A. (eds.) Selected Areas in Cryptography - SAC. LNCS. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99277-4
Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25(3), 226–241 (1978)
Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy Peredachi Informatsii 21(1), 3–16 (1985)
Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_41
Gibson, K.: Severely denting the Gabidulin version of the McEliece public key cryptosystem. Des. Codes Cryptogr. 6(1), 37–45 (1995)
Gibson, K.: The security of the Gabidulin public key cryptosystem. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 212–223. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_19
McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–116. Jet Propulsion Lab. DSN Progress Report 44 (1978)
Ore, Ø.: On a special class of polynomials. Trans. Amer. Math. Soc. 35(3), 559–584 (1933)
Ore, Ø.: Theory of non-commutative polynomials. Ann. Math. 34, 480 (1933)
Overbeck, R.: Extending Gibson’s attacks on the GPT cryptosystem. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 178–188. Springer, Heidelberg (2006). https://doi.org/10.1007/11779360_15
Overbeck, R.: A new structural attack for GPT and variants. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 50–63. Springer, Heidelberg (2005). https://doi.org/10.1007/11554868_5
Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin codes. J. Cryptology 21(2), 280–301 (2008)
Acknowledgments
E. Burle is supported by RIN100 program funded by Région Normandie. A. Otmani is supported by the grant ANR-22-PETQ-0008 PQ-TLS funded by Agence Nationale de la Recherche within France 2030 program, and by FAVPQC (EIG CONCERT-Japan & CNRS).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Burle, É., Otmani, A. (2024). An Upper-Bound on the Decoding Failure Probability of the LRPC Decoder. In: Quaglia, E.A. (eds) Cryptography and Coding. IMACC 2023. Lecture Notes in Computer Science, vol 14421. Springer, Cham. https://doi.org/10.1007/978-3-031-47818-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-47818-5_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47817-8
Online ISBN: 978-3-031-47818-5
eBook Packages: Computer ScienceComputer Science (R0)