Skip to main content

ZK-for-Z2K: MPC-in-the-Head Zero-Knowledge Proofs for \(\mathbb {Z}_{2^k}\)

  • Conference paper
  • First Online:
Cryptography and Coding (IMACC 2023)

Abstract

In this work, we extend the MPC-in-the-Head framework, used in recent efficient zero-knowledge protocols, to work over the ring \(\mathbb {Z}_{2^k}\), which is the primary operating domain for modern CPUs. The proposed schemes are compatible with any threshold linear secret sharing scheme and draw inspiration from MPC protocols adapted for ring operations. Additionally, we explore various batching methodologies, leveraging Shamir’s secret sharing schemes and Galois ring extensions, and show the applicability of our approach in RAM program verification. Finally, we analyse different options for instantiating the resulting ZK scheme over rings and compare their communication costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Many VOLE proofs can be split into an interactive, witness-independent preprocessing phase and a public-coin online phase, of which the latter can be made non-interactive. Note that this still requires the designated verifier to keep secret state.

  2. 2.

    Informally, an exceptional sequence of elements in a ring R is such that their pairwise difference is invertible. (See Sect. 2.2.).

References

  1. Abspoel, M., Cramer, R., Damgård, I., Escudero, D., Yuan, C.: Efficient information-theoretic secure multiparty computation over \(\mathbb{Z}/p^k\mathbb{Z}\) via galois rings. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 471–501. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_19

    Chapter  Google Scholar 

  2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press (2017). https://doi.org/10.1145/3133956.3134104

  3. Baum, C., Braun, L., Munch-Hansen, A., Razet, B., Scholl, P.: Appenzeller to brie: efficient zero-knowledge proofs for mixed-mode arithmetic and Z2k. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 192–211. ACM Press (2021). https://doi.org/10.1145/3460120.3484812

  4. Baum, C., Braun, L., Munch-Hansen, A., Scholl, P.: Moz\(\mathbb{Z} _{2^k}\)arella: Efficient vector-OLE and zero-knowledge proofs over \(\mathbb{Z} _{2^k}\). In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part IV. LNCS, vol. 13510, pp. 329–358. Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-031-15985-5_12

  5. Baum, C., Delpech de Saint Guilhem, C., Kales, D., Orsini, E., Scholl, P., Zaverucha, G.: Banquet: short and fast signatures from AES. In: Garay, J. (ed.) PKC 2021, Part I. LNCS, vol. 12710, pp. 266–297. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-75245-3_11

  6. Baum, C., Nof, A.: Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 495–526. Springer, Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45374-9_17

  7. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge proofs on secret-shared data via fully linear PCPs. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 67–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_3

    Chapter  Google Scholar 

  8. Braun, L., Delpech de Saint Guilhem, C., Jadoul, R., Orsini, E., Smart, N.P., Tanguy, T.: ZK-for-Z2K: MPC-in-the-Head Zero-Knowledge Proofs for \(\mathbb{Z} _{2^k}\). Cryptology ePrint Archive, Report 2023/1057 (2023). https://eprint.iacr.org/2023/1057

  9. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1825–1842. ACM Press (2017). https://doi.org/10.1145/3133956.3133997

  10. Chen, S., Cheon, J.H., Kim, D., Park, D.: Verifiable computing for approximate computation. Cryptology ePrint Archive, Report 2019/762 (2019). https://eprint.iacr.org/2019/762

  11. Cramer, R., Damgård, I., Escudero, D., Scholl, P., Xing, C.: SPD \(\mathbb{Z} _{2^k}\): Efficient MPC mod \(2^k\) for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 769–798. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96881-0_26

  12. Delpech de Saint Guilhem, C., Orsini, E., Tanguy, T.: Limbo: efficient zero-knowledge MPCitH-based arguments. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 3022–3036. ACM Press (2021). https://doi.org/10.1145/3460120.3484595

  13. Delpech de Saint Guilhem, C., Orsini, E., Tanguy, T., Verbauwhede, M.: Efficient proof of RAM programs from any public-coin zero-knowledge system. In: Galdi, C., Jarecki, S. (eds.) SCN 22. LNCS, vol. 13409, pp. 615–638. Springer, Heidelberg, Amalfi, Italy (2022). https://doi.org/10.1007/978-3-031-14791-3_27

  14. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primitives for MPC over mixed arithmetic-binary circuits. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 823–852. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_29

    Chapter  Google Scholar 

  15. Escudero, D., Xing, C., Yuan, C.: More efficient dishonest majority secure computation over \(\mathbb{{Z}} _{2^k}\) via galois rings. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 383–412. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15802-5_14

  16. Fehr, S.: Span programs over rings and how to share a secret from a module (1998), MSc Thesis, ETH Zurich

    Google Scholar 

  17. Feneuil, T., Maire, J., Rivain, M., Vergnaud, D.: Zero-knowledge protocols for the subset sum problem from MPC-in-the-head with rejection. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part II. LNCS, vol. 13792, pp. 371–402. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22966-4_13

  18. Feneuil, T., Rivain, M.: Threshold linear secret sharing to the rescue of MPC-in-the-head. Cryptology ePrint Archive, Report 2022/1407 (2022). https://eprint.iacr.org/2022/1407

  19. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

  20. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 1069–1083. USENIX Association (2016)

    Google Scholar 

  21. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press (1985). https://doi.org/10.1145/22145.22178

  22. Green, M., Hall-Andersen, M., Hennenfent, E., Kaptchuk, G., Perez, B., Laer, G.V.: Efficient proofs of software exploitability for real-world processors. PoPETs 2023(1), 627–640 (2023). https://doi.org/10.56553/popets-2023-0036

  23. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press (2007). https://doi.org/10.1145/1250790.1250794

  24. Jadoul, R., Smart, N.P., Leeuwen, B.V.: MPC for \(Q_2\) access structures over rings and fields. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp. 131–151. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-030-99277-4_7

  25. Kales, D., Zaverucha, G.: Efficient lifting for shorter zero-knowledge proofs and post-quantum signatures. Cryptology ePrint Archive, Report 2022/588 (2022). https://eprint.iacr.org/2022/588

  26. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press (2018). https://doi.org/10.1145/3243734.3243805

  27. Lin, F., Xing, C., Yao, Y.: More efficient zero-knowledge protocols over \(\mathbb{{Z}} _{2^k}\) via galois rings. Cryptology ePrint Archive, Report 2023/150 (2023). https://eprint.iacr.org/2023/150

  28. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–613 (1979)

    MathSciNet  MATH  Google Scholar 

  29. Shoup, V., Smart, N.P.: Lightweight asynchronous verifiable secret sharing with optimal resilience. Cryptology ePrint Archive, Paper 2023/536 (2023).D https://eprint.iacr.org/2023/536

Download references

Acknowledgements

The work was partially supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001120C0085, by CyberSecurity Research Flanders with reference number VR20192203, by the FWO under an Odysseus project GOH9718N, and by the European Research Council (ERC) under the European Unions’s Horizon 2020 research and innovation programme under grant agreement No. 803096 (SPEC). Cyprien Delpech de Saint Guilhem is a Junior FWO Postdoctoral Fellow under project 1266123N. The work of the last author was conducted whilst they were a PhD student at KU Leuven.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of DARPA, the US Government, Cyber Security Research Flanders or the FWO. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Smart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Braun, L., de Saint Guilhem, C.D., Jadoul, R., Orsini, E., Smart, N.P., Tanguy, T. (2024). ZK-for-Z2K: MPC-in-the-Head Zero-Knowledge Proofs for \(\mathbb {Z}_{2^k}\). In: Quaglia, E.A. (eds) Cryptography and Coding. IMACC 2023. Lecture Notes in Computer Science, vol 14421. Springer, Cham. https://doi.org/10.1007/978-3-031-47818-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47818-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47817-8

  • Online ISBN: 978-3-031-47818-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics