Skip to main content

Batch Level Distributed Training of LSTM with Infinity Norm Gradient Flow

  • Conference paper
  • First Online:
Databases Theory and Applications (ADC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14386))

Included in the following conference series:

  • 267 Accesses

Abstract

The advent of the big data era has led to a substantial increase in available data for analysis and prediction, creating a need for effective utilization of this vast input to improve prediction quality. LSTM-based neural networks have demonstrated exceptional performance in tasks such as time series forecasting. However, the effectiveness of these models can be constrained by the limitations of GPU memory. Distributed computing has emerged as a promising solution to address the challenges posed by large-sample, long-sequence time series forecasting. This work develops a novel distributed training method for LSTM-based time series forecasting under big data scenario. Infinity norm gradient flow (INGF) is applied to speed up the convergence, acceleration techniques are designed to improve the utility rate of multiple GPUs. The study showcases significant insights into the performance of various distributed strategies and optimization techniques for batch level distributed training. As a result, we achieve an impressive tenfold increase in efficiency while making only a negligible sacrifice in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggregated price and demand data (2023). https://aemo.com.au/en/energy-systems/electricity

  2. Bae, S.H., Choi, I.K., Kim, N.S.: Acoustic scene classification using parallel combination of LSTM and CNN. In: DCASE, pp. 11–15 (2016)

    Google Scholar 

  3. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. John Wiley & Sons, Hoboken (2015)

    Google Scholar 

  4. Brownlee, J.: A gentle introduction to the rectified linear unit (ReLU). Mach. Learn. Mastery 6 (2019)

    Google Scholar 

  5. Cai, L., Yu, X., Li, C., Eberhard, A., Nguyen, L.T., Doan, C.T.: Impact of mathematical norms on convergence of gradient descent algorithms for deep neural networks learning. In: Aziz, H., Correa, D., French, T. (eds.) AI 2022: Advances in Artificial Intelligence. AI 2022. LNCS, vol. 13728, pp. 131–144. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22695-3_10

  6. Cao, J., Li, Z., Li, J.: Financial time series forecasting model based on CEEMDAN and LSTM. Phys. A 519, 127–139 (2019)

    Article  Google Scholar 

  7. Chen, Z., Ma, M., Li, T., Wang, H., Li, C.: Long sequence time-series forecasting with deep learning: a survey. Inf. Fusion 97, 101819 (2023)

    Article  Google Scholar 

  8. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10 (2016)

    Google Scholar 

  9. Chimmula, V.K.R., Zhang, L.: Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos, Solitons Fractals 135, 109864 (2020)

    Article  MATH  Google Scholar 

  10. Conrad, K.: Equivalence of norms. Expository Paper, University of Connecticut, Storrs, heruntergeladen von, vol. 17, no. 2018 (2018)

    Google Scholar 

  11. Dean, J., et al.: Large scale distributed deep networks. Adv. Neural Inf. Process. Syst. 25 (2012)

    Google Scholar 

  12. developer, N.: System management interface SMI (2023). https://developer.nvidia.com/nvidia-system-management-interface

  13. (2023). www.tensorflow.org/api_docs/python/tf/distribute/Strategy

  14. Fan, Y., Xu, K., Wu, H., Zheng, Y., Tao, B.: Spatiotemporal modeling for nonlinear distributed thermal processes based on kl decomposition, MLP and LSTM network. IEEE Access 8, 25111–25121 (2020)

    Article  Google Scholar 

  15. Farsi, B., Amayri, M., Bouguila, N., Eicker, U.: On short-term load forecasting using machine learning techniques and a novel parallel deep LSTM-CNN approach. IEEE Access 9, 31191–31212 (2021)

    Article  Google Scholar 

  16. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: Continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

    Article  Google Scholar 

  17. Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU Press, Baltimore (2013)

    Google Scholar 

  18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Micikevicius, P., et al.: Mixed precision training. arXiv preprint arXiv:1710.03740 (2017)

  22. Mohanty, S.N., Lydia, E.L., Elhoseny, M., Al Otaibi, M.M.G., Shankar, K.: Deep learning with LSTM based distributed data mining model for energy efficient wireless sensor networks. Phys. Commun. 40, 101097 (2020)

    Google Scholar 

  23. Öztürk, M.M.: Hyperparameter optimization of a parallelized LSTM for time series prediction. Vietnam J. Comput. Sci. 1–26 (2023)

    Google Scholar 

  24. Pang, B., Nijkamp, E., Wu, Y.N.: Deep learning with tensorflow: a review. J. Educ. Behav. Stat. 45(2), 227–248 (2020)

    Article  Google Scholar 

  25. Parra, G.D.L.T., Rad, P., Choo, K.K.R., Beebe, N.: Detecting internet of things attacks using distributed deep learning. J. Netw. Comput. Appl. 163, 102662 (2020)

    Article  Google Scholar 

  26. Parallel vs. distributed computing: an overview (2022). blog.purestorage.com/purely-informational/parallel-vs-distributed-computing-an-overview/

    Google Scholar 

  27. Quinn, M.J.: Parallel Computing Theory and Practice. McGraw-Hill, Inc., New York (1994)

    Google Scholar 

  28. Sagheer, A., Kotb, M.: Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing 323, 203–213 (2019)

    Article  Google Scholar 

  29. Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  30. Better performance with tf.function (2023). www.tensorflow.org/guide/function

  31. Ueno, Y., Fukuda, K.: Technologies behind distributed deep learning: Allreduce (2018)

    Google Scholar 

  32. Wilson, A.C., Mackey, L., Wibisono, A.: Accelerating rescaled gradient descent: fast optimization of smooth functions. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linzhe Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, L., Liu, C., Yu, X., Li, C., Eberhard, A. (2024). Batch Level Distributed Training of LSTM with Infinity Norm Gradient Flow. In: Bao, Z., Borovica-Gajic, R., Qiu, R., Choudhury, F., Yang, Z. (eds) Databases Theory and Applications. ADC 2023. Lecture Notes in Computer Science, vol 14386. Springer, Cham. https://doi.org/10.1007/978-3-031-47843-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47843-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47842-0

  • Online ISBN: 978-3-031-47843-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics