Abstract
Automated crop data analysis plays an important role in modern Australian agriculture. As one of the key procedures of analysis, vegetation segmentation, which aims to predict pixel-level labels of vegetation images, has recently demonstrated advanced results on benchmark datasets. However, the promising results are built upon the assumption that the test data and the training data always follow an identical distribution. Due to the differences in vegetation species, country, or illumination conditions, such assumptions are commonly violated in the real-world scenario. As a pilot study, this work confirms the model pre-trained on worldwide vegetation data has a degradation issue when being applied to the Australian wheat data. Instead of conducting expensive pixel-level annotation of Australian wheat data, we propose a self-training strategy that incorporates confidence estimated pseudo-labeling of the wheat data in the training process to close the distribution gap. Meanwhile, to reduce the computational cost, we equip the lightweight transformer framework with a token clustering and reconstruction module. Extensive experimental results demonstrate that the proposed network can achieve 6.4% higher mIOU and 8.6% lower computational costs over the baseline methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Anand, T., Sinha, S., Mandal, M., Chamola, V., Yu, F.R.: AgriSegNet: deep aerial semantic segmentation framework for IoT-assisted precision agriculture. IEEE Sens. J. 21(16), 17581–17590 (2021)
Bhojanapalli, S., Chakrabarti, A., Glasner, D., Li, D., Unterthiner, T., Veit, A.: Understanding robustness of transformers for image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10231–10241 (2021)
Chavan, A., Shen, Z., Liu, Z., Liu, Z., Cheng, K.T., Xing, E.P.: Vision transformer slimming: multi-dimension searching in continuous optimization space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4931–4941 (2022)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Chen, M., Peng, H., Fu, J., Ling, H.: AutoFormer: searching transformers for visual recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12270–12280 (2021)
Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Fawakherji, M., Youssef, A., Bloisi, D., Pretto, A., Nardi, D.: Crop and weeds classification for precision agriculture using context-independent pixel-wise segmentation. In: 2019 Third IEEE International Conference on Robotic Computing (IRC), pp. 146–152. IEEE (2019)
Fu, J., et al.: Dual attention network for scene segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3146–3154 (2019)
Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)
Goncalves, D.N., et al.: MTLSegFormer: multi-task learning with transformers for semantic segmentation in precision agriculture. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6289–6297 (2023)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Guo, Y., Liu, Y., Georgiou, T., Lew, M.S.: A review of semantic segmentation using deep neural networks. Int. J. Multimed. Inf. Retrieval 7, 87–93 (2018). https://doi.org/10.1007/s13735-017-0141-z
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hendrycks, D., et al.: The many faces of robustness: a critical analysis of out-of-distribution generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8340–8349 (2021)
Hoffman, J., Wang, D., Yu, F., Darrell, T.: FCNs in the wild: pixel-level adversarial and constraint-based adaptation (2016)
Hou, Z., Kung, S.Y.: Multi-dimensional model compression of vision transformer. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 01–06. IEEE (2022)
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Hoyer, L., Dai, D., Van Gool, L.: DAFormer: improving network architectures and training strategies for domain-adaptive semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9924–9935 (2022)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)
Jampani, V., Sun, D., Liu, M.-Y., Yang, M.-H., Kautz, J.: Superpixel sampling networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 363–380. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_22
Korts, J.R., et al.: INVITA and AGFEML-monitoring and extending the value of NVT trials
Kouw, W.M., Loog, M.: An introduction to domain adaptation and transfer learning. arXiv preprint arXiv:1812.11806 (2018)
Kuwata, K., Shibasaki, R.: Estimating crop yields with deep learning and remotely sensed data. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 858–861. IEEE (2015)
Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, Atlanta, vol. 3, p. 896 (2013)
Lee, J., Nazki, H., Baek, J., Hong, Y., Lee, M.: Artificial intelligence approach for tomato detection and mass estimation in precision agriculture. Sustainability 12(21), 9138 (2020)
Lehnert, C., English, A., McCool, C., Tow, A.W., Perez, T.: Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robot. Autom. Lett. 2(2), 872–879 (2017)
Liang, W., et al.: Expediting large-scale vision transformer for dense prediction without fine-tuning. arXiv preprint arXiv:2210.01035 (2022)
Liang, Y., Ge, C., Tong, Z., Song, Y., Wang, J., Xie, P.: Not all patches are what you need: expediting vision transformers via token reorganizations. arXiv preprint arXiv:2202.07800 (2022)
Liu, X., Xing, F., Yang, C., El Fakhri, G., Woo, J.: Adapting off-the-shelf source segmenter for target medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 549–559. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_51
Liu, X., et al.: Deep unsupervised domain adaptation: a review of recent advances and perspectives. APSIPA Trans. Sig. Inf. Process. 11(1) (2022)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Luo, Y., Wang, Z., Chen, Z., Huang, Z., Baktashmotlagh, M.: Source-free progressive graph learning for open-set domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 45(9), 11240–11255 (2023)
Luo, Z., Yang, W., Yuan, Y., Gou, R., Li, X.: Semantic segmentation of agricultural images: a survey. Inf. Process. Agric. (2023)
Madec, S., et al.: VegAnn, vegetation annotation of multi-crop RGB images acquired under diverse conditions for segmentation. Sci. Data 10(1), 302 (2023)
Marani, R., Milella, A., Petitti, A., Reina, G.: Deep neural networks for grape bunch segmentation in natural images from a consumer-grade camera. Precision Agric. 22, 387–413 (2021). https://doi.org/10.1007/s11119-020-09736-0
Mavridou, E., Vrochidou, E., Papakostas, G.A., Pachidis, T., Kaburlasos, V.G.: Machine vision systems in precision agriculture for crop farming. J. Imaging 5(12), 89 (2019)
Meyer, G.E., Neto, J.C.: Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 63(2), 282–293 (2008)
Milioto, A., Lottes, P., Stachniss, C.: Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2229–2235. IEEE (2018)
Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2021)
Naseer, M.M., Ranasinghe, K., Khan, S.H., Hayat, M., Shahbaz Khan, F., Yang, M.H.: Intriguing properties of vision transformers. In: Advances in Neural Information Processing Systems, vol. 34, pp. 23296–23308 (2021)
Olsson, V., Tranheden, W., Pinto, J., Svensson, L.: ClassMix: segmentation-based data augmentation for semi-supervised learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1369–1378 (2021)
Ouhami, M., Hafiane, A., Es-Saady, Y., El Hajji, M., Canals, R.: Computer vision, IoT and data fusion for crop disease detection using machine learning: a survey and ongoing research. Remote Sens. 13(13), 2486 (2021)
Paul, S., Chen, P.Y.: Vision transformers are robust learners. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2071–2081 (2022)
Payne, A.B., Walsh, K.B., Subedi, P., Jarvis, D.: Estimation of mango crop yield using image analysis-segmentation method. Comput. Electron. Agric. 91, 57–64 (2013)
Phadikar, S., Goswami, J.: Vegetation indices based segmentation for automatic classification of brown spot and blast diseases of rice. In: 2016 3rd International Conference on Recent Advances in Information Technology (RAIT). pp. 284–289. IEEE (2016)
Rakhmatulin, I., Kamilaris, A., Andreasen, C.: Deep neural networks to detect weeds from crops in agricultural environments in real-time: a review. Remote Sens. 13(21), 4486 (2021)
Rao, Y., Zhao, W., Liu, B., Lu, J., Zhou, J., Hsieh, C.J.: DynamicViT: efficient vision transformers with dynamic token sparsification. In: Advances in Neural Information Processing Systems, vol. 34, pp. 13937–13949 (2021)
Renggli, C., Pinto, A.S., Houlsby, N., Mustafa, B., Puigcerver, J., Riquelme, C.: Learning to merge tokens in vision transformers. arXiv preprint arXiv:2202.12015 (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Ryoo, M., Piergiovanni, A., Arnab, A., Dehghani, M., Angelova, A.: TokenLearner: adaptive space-time tokenization for videos. In: Advances in Neural Information Processing Systems, vol. 34, pp. 12786–12797 (2021)
Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3723–3732 (2018)
Sakaridis, C., Dai, D., Hecker, S., Van Gool, L.: Model adaptation with synthetic and real data for semantic dense foggy scene understanding. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 707–724. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_42
Sharma, A., Jain, A., Gupta, P., Chowdary, V.: Machine learning applications for precision agriculture: a comprehensive review. IEEE Access 9, 4843–4873 (2020)
Sifre, L., Mallat, S.: Rigid-motion scattering for texture classification. arXiv preprint arXiv:1403.1687 (2014)
Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: Advances in Neural Information Processing Systems, vol. 33, pp. 596–608 (2020)
Sultana, F., Sufian, A., Dutta, P.: Evolution of image segmentation using deep convolutional neural network: a survey. Knowl.-Based Syst. 201, 106062 (2020)
Sun, B., Feng, J., Saenko, K.: Return of frustratingly easy domain adaptation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Tavera, A., Arnaudo, E., Masone, C., Caputo, B.: Augmentation invariance and adaptive sampling in semantic segmentation of agricultural aerial images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1656–1665 (2022)
Tranheden, W., Olsson, V., Pinto, J., Svensson, L.: DACS: domain adaptation via cross-domain mixed sampling. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1379–1389 (2021)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, W., Siau, K.: Artificial intelligence, machine learning, automation, robotics, future of work and future of humanity: a review and research agenda. J. Database Manag. (JDM) 30(1), 61–79 (2019)
Wang, Z., Luo, Y., Qiu, R., Huang, Z., Baktashmotlagh, M.: Learning to diversify for single domain generalization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 834–843 (2021)
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: Advances in Neural Information Processing Systems, vol. 34, pp. 12077–12090 (2021)
Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4085–4095 (2020)
Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11
Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12414–12424 (2021)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)
Zhou, D., et al.: Understanding the robustness in vision transformers. In: International Conference on Machine Learning, pp. 27378–27394. PMLR (2022)
Zou, Y., Yu, Z., Vijaya Kumar, B.V.K., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 297–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_18
Zou, Y., Yu, Z., Liu, X., Kumar, B., Wang, J.: Confidence regularized self-training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5982–5991 (2019)
Acknowledgement
This work was partially supported by UoQ2003-011RTX (2020–2024).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yuan, B., Wang, Z., Yu, X. (2024). Towards Reliable and Efficient Vegetation Segmentation for Australian Wheat Data Analysis. In: Bao, Z., Borovica-Gajic, R., Qiu, R., Choudhury, F., Yang, Z. (eds) Databases Theory and Applications. ADC 2023. Lecture Notes in Computer Science, vol 14386. Springer, Cham. https://doi.org/10.1007/978-3-031-47843-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-47843-7_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47842-0
Online ISBN: 978-3-031-47843-7
eBook Packages: Computer ScienceComputer Science (R0)