Skip to main content

Statistical Performance of Subgradient Step-Size Update Rules in Lagrangian Relaxations of Chance-Constrained Optimization Models

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14395))

Included in the following conference series:

  • 206 Accesses

Abstract

Lagrangian relaxation schemes, coupled with a subgradient procedure, are frequently employed to solve chance-constrained optimization models. Subgradient procedures typically rely on step-size update rules. Although there is extensive research on the properties of these step-size update rules, there is little consensus on which rules are most suitable practically; especially, when the underlying model is a computationally challenging instance of a chance-constrained program. To close this gap, we seek to determine whether a single step-size rule can be statistically guaranteed to perform better than others. We couple the Lagrangian procedure with three strategies to identify lower bounds for two-stage chance-constrained programs. We consider two instances of such models that differ in the presence of binary variables in the second-stage. With a series of computational experiments, we demonstrate—in marked contrast to existing theoretical results—that no significant statistical differences in terms of optimality gaps is detected between six well-known step-size update rules. Despite this, our results demonstrate that a Lagrangian procedure provides computational benefit over a naive solution method—regardless of the underlying step-size update rule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, S., Luedtke, J., Song, Y., Xie, W.: Nonanticipative duality, relaxations, and formulations for chance-constrained stochastic programs. Math. Program. 162(1–2), 51–81 (2017). https://doi.org/10.1007/s10107-016-1029-z

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmed, S., Shapiro, A.: Solving chance-constrained stochastic programs via sampling and integer programming. In: State-of-the-Art Decision-Making Tools in the Information-Intensive Age, pp. 261–269. INFORMS (2008). https://doi.org/10.1287/educ.1080.0048

  3. Ahmed, S., Xie, W.: Relaxations and approximations of chance constraints under finite distributions. Math. Program. 170(1), 43–65 (2018). https://doi.org/10.1007/s10107-018-1295-z

    Article  MathSciNet  MATH  Google Scholar 

  4. Allen, E., Helgason, R., Kennington, J., Shetty, B.: A generalization of Polyak’s convergence result for subgradient optimization. Math. Program. 37(3), 309–317 (1987). https://doi.org/10.1007/BF02591740

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511804441

    Book  MATH  Google Scholar 

  6. Charnes, A., Cooper, W.W.: Chance-constrained programming. Manage. Sci. 6(1), 73–79 (1959). https://doi.org/10.1287/mnsc.6.1.73

    Article  MathSciNet  MATH  Google Scholar 

  7. d’Antonio, G., Frangioni, A.: Convergence analysis of deflected conditional approximate subgradient methods. SIAM J. Optim. 20(1), 357–386 (2009). https://doi.org/10.1137/080718814

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, Y., Shen, S.: Decomposition algorithms for optimizing multi-server appointment scheduling with chance constraints. Math. Program. 157(1), 245–276 (2016). https://doi.org/10.1007/s10107-016-0990-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization. Math. Program. 6(1), 62–88 (1974). https://doi.org/10.1007/BF01580223

    Article  MathSciNet  MATH  Google Scholar 

  10. Hoffmann, M., Kotzur, L., Stolten, D., Robinius, M.: A review on time series aggregation methods for energy system models. Energies 13(3), 641 (2020). https://doi.org/10.3390/en13030641

    Article  Google Scholar 

  11. Hoffmann, M., Priesmann, J., Nolting, L., Praktiknjo, A., Kotzur, L., Stolten, D.: Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models. Appl. Energy 304, 117825 (2021). https://doi.org/10.1016/j.apenergy.2021.117825

    Article  Google Scholar 

  12. Kotzur, L., Markewitz, P., Robinius, M., Stolten, D.: Impact of different time series aggregation methods on optimal energy system design. Renewable Energy 117, 474–487 (2018). https://doi.org/10.1016/j.renene.2017.10.017

    Article  Google Scholar 

  13. Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132(1–2), 31–56 (2010). https://doi.org/10.1007/s10107-010-0385-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Larsson, T., Patriksson, M., Strömberg, A.B.: Conditional subgradient optimization — theory and applications. Eur. J. Oper. Res. 88(2), 382–403 (1996). https://doi.org/10.1016/0377-2217(94)00200-2

    Article  MATH  Google Scholar 

  15. Luedtke, J.: A branch-and-cut decomposition algorithm for solving chance-constrained mathematical programs with finite support. Math. Program. 146(1–2), 219–244 (2014). https://doi.org/10.1007/s10107-013-0684-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Nedić, A., Ozdaglar, A.: Approximate primal solutions and rate analysis for dual subgradient methods. SIAM J. Optim. 19(4), 1757–1780 (2009). https://doi.org/10.1137/070708111

    Article  MathSciNet  MATH  Google Scholar 

  17. Ozturk, U.A., Mazumdar, M., Norman, B.A.: A solution to the stochastic unit commitment problem using chance constrained programming. IEEE Trans. Power Syst. 19(3), 1589–1598 (2004). https://doi.org/10.1109/TPWRS.2004.831651

    Article  Google Scholar 

  18. Polyak, B.T.: A general method for solving extremal problems. Dokl. Akad. Nauk SSSR 174(1), 33–36 (1967)

    MathSciNet  Google Scholar 

  19. Polyak, B.T.: Subgradient methods: a survey of Soviet research. Nonsmooth Optimization 3, 5–29 (1978)

    MathSciNet  Google Scholar 

  20. Polyak, B.T.: Introduction to optimization. Optimization Software (1987)

    Google Scholar 

  21. Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16(1), 119–147 (1991). https://doi.org/10.1287/moor.16.1.119

    Article  MathSciNet  MATH  Google Scholar 

  22. Rokach, L., Maimon, O.: Clustering methods. In: Data mining and knowledge discovery handbook, pp. 321–352. Springer (2005). DOI: https://doi.org/10.1007/0-387-25465-X_15

  23. Sashirekha, A., Pasupuleti, J., Moin, N.H., Tan, C.S.: Combined heat and power (CHP) economic dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates. Int. J. Electrical Power Energy Syst. 44(1), 421–430 (2013). https://doi.org/10.1016/j.ijepes.2012.07.038

    Article  Google Scholar 

  24. Shor, N.Z.: The rate of convergence of the generalized gradient descent method. Cybern. Syst. Anal. 4(3), 79–80 (1968). https://doi.org/10.1007/BF01073933

    Article  Google Scholar 

  25. Singh, B., Knueven, B.: Lagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage system. J. Global Optim. 80(4), 965–989 (2021). https://doi.org/10.1007/s10898-021-01041-y

    Article  MathSciNet  MATH  Google Scholar 

  26. Singh, B., Morton, D.P., Santoso, S.: An adaptive model with joint chance constraints for a hybrid wind-conventional generator system. CMS 15(3–4), 563–582 (2018). https://doi.org/10.1007/s10287-018-0309-x

    Article  MathSciNet  MATH  Google Scholar 

  27. Singh, B., Watson, J.P.: Approximating two-stage chance-constrained programs with classical probability bounds. Opt. Lett. 13(6), 1403–1416 (2019). https://doi.org/10.1007/s11590-019-01387-z

    Article  MathSciNet  MATH  Google Scholar 

  28. Takriti, S., Birge, J.R.: Lagrangian solution techniques and bounds for loosely coupled mixed-integer stochastic programs. Oper. Res. 48(1), 91–98 (2000). https://doi.org/10.1287/opre.48.1.91.12450

    Article  MathSciNet  MATH  Google Scholar 

  29. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, Washington (1977). https://doi.org/10.2307/2006360

  30. Watson, J.P., Wets, R.J.B., Woodruff, D.L.: Scalable heuristics for a class of chance-constrained stochastic programs. INFORMS J. Comput. 22(4), 543–554 (2010). https://doi.org/10.1287/ijoc.1090.0372

    Article  MathSciNet  MATH  Google Scholar 

  31. Yuan, D., Xu, S., Zhao, H.: Distributed primal–dual subgradient method for multiagent optimization via consensus algorithms. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 41(6), 1715–1724 (2011).https://doi.org/10.1109/tsmcb.2011.2160394

Download references

Acknowledgments

We gratefully acknowledge the compute resources and support provided by the Erlangen Regional Computing Center (RRZE). The authors acknowledge the financial support by the Federal Ministry for Economic Affairs and Energy of Germany in the project METIS (project number 03ET4064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bismark Singh .

Editor information

Editors and Affiliations

Ethics declarations

Data Availability

All our codes and data, as well as Appendix A and B containing our algorithms and computational results, are publicly available at:  https://github.com/charlotteritter/ArticleSubgradient.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 513 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ritter, C., Singh, B. (2023). Statistical Performance of Subgradient Step-Size Update Rules in Lagrangian Relaxations of Chance-Constrained Optimization Models. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2023. Lecture Notes in Computer Science, vol 14395. Springer, Cham. https://doi.org/10.1007/978-3-031-47859-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47859-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47858-1

  • Online ISBN: 978-3-031-47859-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics