Skip to main content

Efficient Motor Learning Through Action-Perception Cycles in Deep Kinematic Inference

  • Conference paper
  • First Online:
Active Inference (IWAI 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1915))

Included in the following conference series:

Abstract

How does the brain adapt to slow changes in the body’s kinematic chain? And how can it perform complex operations that need tool use? Here, we consider both processes through the same perspective and propose that the kinematic chain is represented by an Active Inference model encoding, in a hierarchical fashion, intrinsic and extrinsic information separately. However, the several pathways through which prediction errors can be minimized introduce some optimization problems. We show that an agent can rapidly change its kinematic chain online using action-perception cycles, similar to how learning and inference processes are handled in Predictive Coding Networks.

Supported by European Union H2020-EIC-FETPROACT-2019 grant 951910 to IPS and Italian PRIN grant 2017KZNZLN to IPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.A., Shipp, S., Friston, K.J.: Predictions not commands: active inference in the motor system. Brain Struct. Funct. 218(3), 611–643 (2013). https://doi.org/10.1007/s00429-012-0475-5

    Article  Google Scholar 

  2. Anil Meera, A., Novicky, F., Parr, T., Friston, K., Lanillos, P., Sajid, N.: Reclaiming saliency: rhythmic precision-modulated action and perception. Front. Neurorobot. 16, 1–23 (2022). https://doi.org/10.3389/fnbot.2022.896229

    Article  Google Scholar 

  3. Çatal, O., Verbelen, T., Van de Maele, T., Dhoedt, B., Safron, A.: Robot navigation as hierarchical active inference. Neural Netw. 142, 192–204 (2021)

    Google Scholar 

  4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  5. Fiebelkorn, I.C., Kastner, S.: A rhythmic theory of attention. Trends Cogn. Sci. 23, 87–101 (2019). https://doi.org/10.1016/j.tics.2018.11.009

    Article  Google Scholar 

  6. Friston, K.: What is optimal about motor control? Neuron 72(3), 488–498 (2011). https://doi.org/10.1016/j.neuron.2011.10.018

    Article  Google Scholar 

  7. Friston, K.J., Daunizeau, J., Kilner, J., Kiebel, S.J.: Action and behavior: a free-energy formulation. Biol. Cybern. 102(3), 227–260 (2010). https://doi.org/10.1007/s00422-010-0364-z

    Article  Google Scholar 

  8. Friston, K.J., Mattout, J., Kilner, J.: Action understanding and active inference. Biol. Cybern. 104(1–2), 137–60 (2011). https://doi.org/10.1007/s00422-011-0424-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Friston, K.J., Rosch, R., Parr, T., Price, C., Bowman, H.: Deep temporal models and active inference. Neurosci. Biobehav. Rev. 77, 388–402 (2017). https://doi.org/10.1016/j.neubiorev.2017.04.009

    Article  Google Scholar 

  10. Fuhr, P., et al.: Physiological analysis of motor reorganization following lower limb amputation. Electroencephalogr. Clin. Neurophysiol./Evoked Potentials 85(1), 53–60 (1992). https://doi.org/10.1016/0168-5597(92)90102-H

    Article  Google Scholar 

  11. Hohwy, J.: The Predictive Mind. Oxford University Press, Oxford (2013)

    Google Scholar 

  12. Lanillos, P., Pages, J., Cheng, G.: Robot self/other distinction: active inference meets neural networks learning in a mirror (ECAI) (2020). https://arxiv.org/abs/2004.05473

  13. Millidge, B., Osanlouy, M., Bogacz, R.: Predictive Coding Networks for Temporal Prediction, pp. 1–59 (2023)

    Google Scholar 

  14. Millidge, B., Tschantz, A., Buckley, C.L.: Predictive coding approximates backprop along arbitrary computation graphs. Neural Comput. 34(6), 1329–1368 (2022). https://doi.org/10.1162/neco_a_01497

    Article  MathSciNet  MATH  Google Scholar 

  15. Obayashi, S., et al.: Functional brain mapping of monkey tool use. Neuroimage 14(4), 853–861 (2001). https://doi.org/10.1006/nimg.2001.0878

    Article  Google Scholar 

  16. Oliver, G., Lanillos, P., Cheng, G.: An empirical study of active inference on a humanoid robot. IEEE Trans. Cogn. Dev. Syst. 8920(c), 1–10 (2021). https://doi.org/10.1109/TCDS.2021.3049907

  17. Parr, T., Pezzulo, G., Friston, K.J.: Active inference: the free energy principle in mind, brain, and behavior (2022)

    Google Scholar 

  18. Pezzulo, G., Rigoli, F., Friston, K.J.: Hierarchical active inference: a theory of motivated control. Trends Cogn. Sci. 22(4), 294–306 (2018)

    Google Scholar 

  19. Priorelli, M., Pezzulo, G., Stoianov, I.P.: Deep kinematic inference affords efficient and scalable control of bodily movements. bioRxiv (2023). https://doi.org/10.1101/2023.05.04.539409. https://www.biorxiv.org/content/early/2023/05/05/2023.05.04.539409

  20. Priorelli, M., Stoianov, I.P.: Intention modulation for multi-step tasks in continuous time active inference. In: Active Inference, Third International Workshop, IWAI 2022, Grenoble, France, 19 September 2022 (2022). https://link.springer.com/book/9783031287206

  21. Priorelli, M., Stoianov, I.P.: Flexible intentions: an active inference theory. Front. Comput. Neurosci. (2023). https://doi.org/10.3389/fncom.2023.1128694

    Article  Google Scholar 

  22. Stengel, R.F.: Optimal control and estimation (1994)

    Google Scholar 

  23. Todorov, E.: Optimality principles in sensorimotor control. Nat. Neurosci. 7, 907–915 (2004). https://doi.org/10.1038/nn1309

    Article  Google Scholar 

  24. Whittington, J.C., Bogacz, R.: Theories of error back-propagation in the brain. Trends Cogn. Sci. 23(3), 235–250 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Priorelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Priorelli, M., Stoianov, I.P. (2024). Efficient Motor Learning Through Action-Perception Cycles in Deep Kinematic Inference. In: Buckley, C.L., et al. Active Inference. IWAI 2023. Communications in Computer and Information Science, vol 1915. Springer, Cham. https://doi.org/10.1007/978-3-031-47958-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47958-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47957-1

  • Online ISBN: 978-3-031-47958-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics