Skip to main content

Realisability of Global Models of Interaction

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2023 (ICTAC 2023)

Abstract

We consider global models of communicating agents specified as transition systems labelled by interactions in which multiple senders and receivers can participate. A realisation of such a model is a set of local transition systems—one per agent—which are executed concurrently using synchronous communication. Our core challenge is how to check whether a global model is realisable and, if it is, how to synthesise a realisation. We identify and compare two variants to realise global interaction models, both relying on bisimulation equivalence. Then we investigate, for both variants, realisability conditions to be checked on global models. We propose a synthesis method for the construction of realisations by grouping locally indistinguishable states. The paper is accompanied by a tool that implements realisability checks and synthesises realisations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 86–106. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50029-0_6

    Chapter  Google Scholar 

  2. Barbanera, F., Lanese, I., Tuosto, E.: Formal choreographic languages. In: ter Beek, M.H., Sirjani, M. (eds.) COORDINATION 2022. LNCS, vol. 13271, pp. 121–139. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08143-9_8

    Chapter  Google Scholar 

  3. Basile, D., Degano, P., Ferrari, G.-L., Tuosto, E.: Relating two automata-based models of orchestration and choreography. J. Log. Algebr. Meth. Program. 85(3), 425–446 (2016). https://doi.org/10.1016/J.JLAMP.2015.09.011

  4. ter Beek, M.H., Ellis, C.A., Kleijn, J., Rozenberg, G.: Synchronizations in team automata for groupware systems. Comput. Sup. Coop. Work 12(1), 21–69 (2003). https://doi.org/10.1023/A:1022407907596

    Article  Google Scholar 

  5. ter Beek, M.H., Hennicker, R., Kleijn, J.: Compositionality of safe communication in systems of team automata. In: Pun, V.K.I., Stolz, V., Simao, A. (eds.) ICTAC 2020. LNCS, vol. 12545, pp. 200–220. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64276-1_11

    Chapter  MATH  Google Scholar 

  6. ter Beek, M.H., Hennicker, R., Proença, J.: Realisability of global models of interaction (extended version). Technical report, Zenodo (2023). https://doi.org/10.5281/zenodo.8377188

  7. ter Beek, M.H., Cledou, G., Hennicker, R., Proença, J.: Can We communicate? Using dynamic logic to verify team automata. In: Chechik, M., Katoen, J.P., Leucker, M. (eds.) FM 2023. LNCS, vol. 14000, pp. 122–141. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27481-7_9

    Chapter  Google Scholar 

  8. Bejleri, A., Yoshida, N.: Synchronous multiparty session types. ENTCS 241, 3–33 (2008). https://doi.org/10.1016/j.entcs.2009.06.002

    Article  Google Scholar 

  9. Ben-David, S., Chechik, M., Gurfinkel, A., Uchitel, S.: CSSL: a logic for specifying conditional scenarios. In: ESEC/FSE, pp. 37–47. ACM (2011). https://doi.org/10.1145/2025113.2025123

  10. van Benthem, J., van Eijck, J., Stebletsova, V.: Modal logic, transition systems and processes. J. Log. Comput. 4(5), 811–855 (1994). https://doi.org/10.1093/logcom/4.5.811

    Article  MathSciNet  MATH  Google Scholar 

  11. Bliudze, S., Sifakis, J.: The algebra of connectors: structuring interaction in BIP. IEEE Trans. Comput. 57(10), 1315–1330 (2008). https://doi.org/10.1109/TC.2008.26

    Article  MathSciNet  MATH  Google Scholar 

  12. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_2

    Chapter  Google Scholar 

  13. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-party sessions. Log. Methods Comput. Sci. 8(1), 24:1–24:45 (2012). https://doi.org/10.2168/LMCS-8(1:24)2012

  14. Castellani, I., Mukund, M., Thiagarajan, P.S.: Synthesizing distributed transition systems from global specifications. In: Rangan, C.P., Raman, V., Ramanujam, R. (eds.) FSTTCS 1999. LNCS, vol. 1738, pp. 219–231. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46691-6_17

    Chapter  Google Scholar 

  15. Cengarle, M.V., Knapp, A., Mühlberger, H.: Interactions. In: Lano, K. (ed.) UML 2 Semantics and Applications, chap. 9, pp. 205–248. Wiley (2009). https://doi.org/10.1002/9780470522622

  16. Corradini, F., Gorrieri, R., Marchignoli, D.: Towards parallelization of concurrent systems. RAIRO Theor. Inform. Appl. 32(4–6), 99–125 (1998). https://doi.org/10.1051/ita/1998324-600991

    Article  MathSciNet  Google Scholar 

  17. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE, pp. 109–120. ACM (2001). https://doi.org/10.1145/503209.503226

  18. Groote, J.F., Moller, F.: Verification of parallel systems via decomposition. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 62–76. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0084783

    Chapter  Google Scholar 

  19. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. Foundations of Computing. MIT Press, Cambridge (2000). https://doi.org/10.7551/mitpress/2516.001.0001

  20. Harel, D., Thiagarajan, P.S.: Message sequence charts. In: Lavagno, L., Martin, G., Selic, B. (eds.) UML for Real: Design of Embedded Real-Time Systems, pp. 77–105. Kluwer (2003). https://doi.org/10.1007/0-306-48738-1_4

  21. Hennicker, R.: Role-based development of dynamically evolving esembles. In: Fiadeiro, J.L., Tutu, I. (eds.) WADT 2018. LNCS, vol. 11563, pp. 3–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23220-7_1

    Chapter  MATH  Google Scholar 

  22. Hennicker, R., Wirsing, M.: Dynamic logic for ensembles. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 32–47. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5_3

    Chapter  Google Scholar 

  23. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL, pp. 273–284. ACM (2008). https://doi.org/10.1145/1328438.1328472

  24. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM Comput. Surv. 49(1), 3:1–3:36 (2016). https://doi.org/10.1145/2873052

  25. Jongmans, S.S., Ferreira, F.: Synthetic behavioural typing: sound, regular multiparty sessions via implicit local types. In: ECOOP. LIPIcs, vol. 263, pp. 9:1–9:29. Dagstuhl (2023). https://doi.org/10.4230/LIPIcs.ECOOP.2023.9

  26. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_6

    Chapter  MATH  Google Scholar 

  27. Luttik, B.: Unique parallel decomposition in branching and weak bisimulation semantics. Theor. Comput. Sci. 612, 29–44 (2016). https://doi.org/10.1016/j.tcs.2015.10.013

    Article  MathSciNet  MATH  Google Scholar 

  28. Lynch, N.A., Tuttle, M.R.: An introduction to Input/Output automata. CWI Q. 2(3), 219–246 (1989). https://ir.cwi.nl/pub/18164

  29. Magee, J., Kramer, J.: Concurrency: State Models & Java Programming. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  30. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 sequence diagrams: a survey. Softw. Syst. Model. 10(4), 489–514 (2011). https://doi.org/10.1007/s10270-010-0157-9

    Article  Google Scholar 

  31. Milner, R., Moller, F.: Unique decomposition of processes. Theor. Comput. Sci. 107(2), 357–363 (1993). https://doi.org/10.1016/0304-3975(93)90176-T

    Article  MathSciNet  MATH  Google Scholar 

  32. Proença, J., Edixhoven, L.: Caos: a reusable scala web animator of operational semantics. In: Jongmans, S.S., Lopes, A. (eds.) COORDINATION 2023. LNCS, vol. 13908, pp. 163–171. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35361-1_9

    Chapter  Google Scholar 

  33. Teren, V., Cortadella, J., Villa, T.: Decomposition of transition systems into sets of synchronizing state machines. In: DSD, pp. 77–81. IEEE (2021). https://doi.org/10.1109/DSD53832.2021.00021

  34. Teren, V., Cortadella, J., Villa, T.: Decomposition of transition systems into sets of synchronizing free-choice Petri Nets. In: DSD, pp. 165–173. IEEE (2022). https://doi.org/10.1109/DSD57027.2022.00031

  35. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Log. Algebr. Meth. Program. 95, 17–40 (2018). https://doi.org/10.1016/j.jlamp.2017.11.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Ter Beek was supported by MUR PRIN 2020TL3X8X project T-LADIES (Typeful Language Adaptation for Dynamic, Interacting and Evolving Systems) and Proença by the CISTER Research Unit (UIDP/UIDB/04234/2020), financed by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology); by project IBEX (PTDC/CCI-COM/4280/2021) financed by national funds through FCT; and by project Route 25 (ref. TRB/2022/00061 – C645463824-00000063) funded by the EU/Next Generation, within the Recovery and Resilience Plan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maurice H. ter Beek or José Proença .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

ter Beek, M.H., Hennicker, R., Proença, J. (2023). Realisability of Global Models of Interaction. In: Ábrahám, E., Dubslaff, C., Tarifa, S.L.T. (eds) Theoretical Aspects of Computing – ICTAC 2023. ICTAC 2023. Lecture Notes in Computer Science, vol 14446. Springer, Cham. https://doi.org/10.1007/978-3-031-47963-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47963-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47962-5

  • Online ISBN: 978-3-031-47963-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics