Abstract
Attack trees are a graphical formalism for security assessment. They are particularly valued for their explainability and high accessibility without security or formal methods expertise. They can be used, for instance, to quantify the global insecurity of a system arising from the unreliability of its parts, graphically explain security bottlenecks, or identify additional vulnerabilities through their systematic decomposition. However, in most cases, the main hindrance in the practical deployment is the need for a domain expert to construct the tree manually or using further models. This paper demonstrates how to learn attack trees from logs, i.e., sets of traces, typically stored abundantly in many application domains. To this end, we design a genetic algorithm and apply it to classes of trees with different expressive power. Our experiments on real data show that comparably simple yet highly accurate trees can be learned efficiently, even from small data sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
We interpret the refinement specification as library similar to [33].
- 4.
There is no optimal combination for the weights. Hence, we explore different weights and how they influence the overall fitness in Sect. 4.
- 5.
The artifact can be found at https://doi.org/10.5281/zenodo.8352279.
- 6.
We already have about one million distinct traces with \(n=9\). However, this is only an upper bound since we stop the traces as soon as the root turns \(\textsf{tt}\).
- 7.
- 8.
References
Jalil, K.A., Kamarudin, M.H., Masrek, M.N.: Comparison of machine learning algorithms performance in detecting network intrusion. In: 2010 International Conference on Networking and Information Technology, pp. 221–226. IEEE (2010)
Alhomidi, M., Reed, M.: Finding the minimum cut set in attack graphs using genetic algorithms. In: 2013 International Conference on Computer Applications Technology (ICCAT), pp. 1–6. IEEE (2013)
André, É., et al.: Parametric analyses of attack-fault trees. In: 2019 19th International Conference on Application of Concurrency to System Design (ACSD), pp. 33–42. IEEE (2019)
Bates, D., et al.: Fitting linear mixed-effects models using lme4 (2014)
Bryans, J., et al.: A template-based method for the generation of attack trees. In: Laurent, M., Giannetsos, T. (eds.) WISTP 2019. LNCS, vol. 12024, pp. 155–165. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41702-4_10
Budde, C.E., Bucur, D., Verkuil, B.: Automated fault tree learning from continuous-valued sensor data. Int. J. Prognostics Health Manag. 13(2) (2022). https://doi.org/10.36001/ijphm.2022.v13i2.3160. ISSN 2153-2648
Buldas, A., et al.: Attribute evaluation on attack trees with incomplete information. Comput. Secur. 88, 101630 (2020)
Chawla, N.V.: C4. 5 and imbalanced data sets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure. In: Proceedings of the ICML, Toronto, ON, Canada, vol. 3, p. 66. CIBC (2003)
Fila, B., Wideł, W.: Attack–defense trees for abusing optical power meters: a case study and the OSEAD tool experience report. In: Albanese, M., Horne, R., Probst, C.W. (eds.) GraMSec 2019. LNCS, vol. 11720, pp. 95–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36537-0_6
Gadyatskaya, O., Trujillo-Rasua, R.: New directions in attack tree research: catching up with industrial needs. In: Liu, P., Mauw, S., Stølen, K. (eds.) GraMSec 2017. LNCS, vol. 10744, pp. 115–126. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74860-3_9
Gadyatskaya, O., et al.: Attack trees for practical security assessment: ranking of attack scenarios with ADTool 2.0. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp. 159–162. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4_10
Gonçalves, E.C., Freitas, A.A., Plastino, A.: A survey of genetic algorithms for multi-label classification. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2018)
Gupta, M., et al.: Matching information security vulnerabilities to organizational security profiles: a genetic algorithm approach. Decis. Support Syst. 41(3), 592–603 (2006)
Hermanns, H., et al.: The value of attack-defence diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0_9
Hong, J.B., Kim, D.S., Takaoka, T.: Scalable attack representation model using logic reduction techniques. In: 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, pp. 404–411. IEEE (2013)
Hosmer, D.W., Jr., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, vol. 398. Wiley, Hoboken (2013)
Ivanova, M.G., et al.: Attack tree generation by policy invalidation. In: Akram, R.N., Jajodia, S. (eds.) WISTP 2015. LNCS, vol. 9311, pp. 249–259. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24018-3_16
Jhawar, R., et al.: Attack trees with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18467-8_23
Jhawar, R., et al.: Semi-automatically augmenting attack trees using an annotated attack tree library. In: Katsikas, S.K., Alcaraz, C. (eds.) STM 2018. LNCS, vol. 11091, pp. 85–101. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01141-3_6
Jimenez-Roa, L.A., et al.: Automatic inference of fault tree models via multi-objective evolutionary algorithms. IEEE Trans. Dependable Secure Comput. 20(4), 3317–3327 (2023). https://doi.org/10.1109/tdsc.2022.3203805. ISSN 1545-5971
Jürgenson, A., Willemson, J.: On fast and approximate attack tree computations. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 56–66. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12827-1_5
Kim, D., Choi, J., Han, K.: Risk management-based security evaluation model for telemedicine systems. BMC Med. Inform. Decis. Mak. 20(1), 1–14 (2020)
Kordy, B., Pietre-Cambacedes, L., Schweitzer, P.: DAG-based attack and defense modeling: don’t miss the forest for the attack trees. CoRR, abs/1303.7397 (2013). http://arxiv.org/abs/1303.7397
Kordy, B., et al.: Foundations of attack-defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19751-2_6 ISBN 978-3-642-19750-5
Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-fault trees. In: High Assurance Systems Engineering (HASE), pp. 25–32 (2017). https://doi.org/10.1109/HASE.2017.12
Lenin, A., Willemson, J., Sari, D.P.: Attacker profiling in quantitative security assessment based on attack trees. In: Bernsmed, K., Fischer-Hübner, S. (eds.) NordSec 2014. LNCS, vol. 8788, pp. 199–212. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11599-3_12
Linard, A., Bucur, D., Stoelinga, M.: Fault trees from data: efficient learning with an evolutionary algorithm. In: Guan, N., Katoen, J.-P., Sun, J. (eds.) SETTA 2019. LNCS, vol. 11951, pp. 19–37. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35540-1_2
Majeed, P.G., Kumar, S.: Genetic algorithms in intrusion detection systems: a survey. Int. J. Innov. Appl. Stud. 5(3), 233 (2014)
RTO NATO. Improving common security risk analysis. Technical report, RTO Technical Report TR-IST-049, Research and Technology Organisation of NATO (2008)
Pawar, S.N.: Intrusion detection in computer network using genetic algorithm approach: a survey. Int. J. Adv. Eng. Technol. 6(2), 730 (2013)
Pinchinat, S., Acher, M., Vojtisek, D.: ATSyRa: an integrated environment for synthesizing attack trees. In: Mauw, S., Kordy, B., Jajodia, S. (eds.) GraMSec 2015. LNCS, vol. 9390, pp. 97–101. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29968-6_7
Pinchinat, S., Acher, M., Vojtisek, D.: Towards synthesis of attack trees for supporting computer-aided risk analysis. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 363–375. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1_24
Pinchinat, S., Schwarzentruber, F., Lê Cong, S.: Library-based attack tree synthesis. In: Eades III, H., Gadyatskaya, O. (eds.) GraMSec 2020. LNCS, vol. 12419, pp. 24–44. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62230-5_2
Ramos, J.L.H., Skarmeta, A.: Assessing vulnerabilities in IoT-based ambient assisted living systems. Secur. Privacy Internet Things Challenges Solutions 27, 94 (2020)
Rosmansyah, Y., Hendarto, I., Pratama, D.: Impersonation attack-defense tree. Int. J. Emerg. Technol. Learn. (iJET) 15(19), 239–246 (2020)
Schneier, B.: Secrets & Lies: Digital Security in a Networked World, 1st edn. Wiley, New York (2000). ISBN 0471253111
Sheyner, O., et al.: Automated generation and analysis of attack graphs. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy, SP 2002, Washington, DC, USA, p. 273. IEEE Computer Society (2002). http://dl.acm.org/citation.cfm?id=829514.830526. ISBN 0-7695-1543-6
Shostack, A.: Threat Modeling: Designing for Security. Wiley, Hoboken (2014)
Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In: 2014 IEEE 27th Computer Security Foundations Symposium, pp. 337–350. IEEE (2014)
Widel, W., et al.: Beyond 2014: formal methods for attack tree-based security modeling. ACM Comput. Surv. (CSUR) 52(4), 1–36 (2019)
Acknowledgement
The work was partially supported by the MUNI Award in Science and Humanities (MUNI/I/1757/2021) of the Grant Agency of Masaryk University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dorfhuber, F., Eisentraut, J., Křetínský, J. (2023). Learning Attack Trees by Genetic Algorithms. In: Ábrahám, E., Dubslaff, C., Tarifa, S.L.T. (eds) Theoretical Aspects of Computing – ICTAC 2023. ICTAC 2023. Lecture Notes in Computer Science, vol 14446. Springer, Cham. https://doi.org/10.1007/978-3-031-47963-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-47963-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47962-5
Online ISBN: 978-3-031-47963-2
eBook Packages: Computer ScienceComputer Science (R0)