Skip to main content

Unsupervised Deep-Learning Approach for Underwater Image Enhancement

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14362))

Included in the following conference series:

  • 312 Accesses

Abstract

Underwater images often contain color casting and blurriness which reduce the quality. State-of-the-art shows different deep-learning models to handle these degradations. However, they required ground truth to train, which is impossible to acquire when studying underwater images. We present an unsupervised deep-learning approach for underwater image enhancement based on the mathematical model of a hazy image. This allows us to train networks without the need for a reference image. We use three networks to estimate the transmission map, the atmospheric light, and the enhanced image and propose a compound loss function to train our approach accurately. We achieve state-of-the-art results in the structural similarity index (SSIM) while performing optimally nearly real-time inference speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akkaynak, D., Treibitz, T.: A revised underwater image formation model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  2. Ancuti, C., Ancuti, C.O., Haber, T., Bekaert, P.: Enhancing underwater images and videos by fusion. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 81–88. IEEE (2012)

    Google Scholar 

  3. Bazeille, S., Quidu, I., Jaulin, L.: Color-based underwater object recognition using water light attenuation. Intell. Serv. Robot. 5, 109–118 (2012). https://doi.org/10.1007/s11370-012-0105-3

    Article  Google Scholar 

  4. Berman, D., Levy, D., Avidan, S., Treibitz, T.: Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans. Pattern Anal. Mach. Intell. 43, 2822–2837 (2020)

    Google Scholar 

  5. Emberton, S., Chittka, L., Cavallaro, A.: Underwater image and video dehazing with pure haze region segmentation. Comput. Vis. Image Understand. 168, 145–156 (2018). https://doi.org/10.1016/j.cviu.2017.08.003. https://www.sciencedirect.com/science/article/pii/S1077314217301418. Special Issue on Vision and Computational Photography and Graphics

  6. Espinosa, A.R., McIntosh, D., Albu, A.B.: An efficient approach for underwater image improvement: deblurring, dehazing, and color correction. In: 2023 IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), pp. 206–215 (2023). https://doi.org/10.1109/WACVW58289.2023.00026

  7. Fayaz, S., Parah, S.A., Qureshi, G.J.: Efficient underwater image restoration utilizing modified dark channel prior. Multimedia Tools Appl. 82(10), 14731–14753 (2023). https://doi.org/10.1007/s11042-022-13828-6

    Article  Google Scholar 

  8. Fu, M., Liu, H., Yu, Y., Chen, J., Wang, K.: DW-GAN: a discrete wavelet transform GAN for nonhomogeneous dehazing. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 203–212 (2021). https://doi.org/10.1109/CVPRW53098.2021.00029

  9. Fu, X., Cao, X.: Underwater image enhancement with global-local networks and compressed-histogram equalization. Sig. Process. Image Commun. 86, 115892 (2020). https://doi.org/10.1016/j.image.2020.115892. https://www.sciencedirect.com/science/article/pii/S0923596520300965

  10. Fu, Z., Lin, X., Wang, W., Huang, Y., Ding, X.: Underwater image enhancement via learning water type desensitized representations (2021). https://doi.org/10.48550/ARXIV.2102.00676. https://arxiv.org/abs/2102.00676

  11. Fu, Z., Lin, X., Wang, W., Huang, Y., Ding, X.: Underwater image enhancement via learning water type desensitized representations. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2764–2768 (2022). https://doi.org/10.1109/ICASSP43922.2022.9747758

  12. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1956–1963 (2009). https://doi.org/10.1109/CVPR.2009.5206515

  13. Heesemann, M., Insua, T.L., Scherwath, M., Juniper, K.S., Moran, K.: Ocean networks Canada: from geohazards research laboratories to smart ocean systems. Oceanography 27(2), 151–153 (2014)

    Article  Google Scholar 

  14. Islam, M.J., Xia, Y., Sattar, J.: Fast underwater image enhancement for improved visual perception. IEEE Robot. Autom. Lett. (RA-L) 5(2), 3227–3234 (2020)

    Google Scholar 

  15. James, S., Harbron, C., Branson, J., Sundler, M.: Synthetic data use: exploring use cases to optimise data utility. Discov. Artif. Intell. 1(1), 1–13 (2021). https://doi.org/10.1007/s44163-021-00016-y

    Article  Google Scholar 

  16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  17. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind motion deblurring using conditional adversarial networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018). https://doi.org/10.1109/CVPR.2018.00854

  18. Li, B., Gou, Y., Gu, S., Liu, J.Z., Zhou, J.T., Peng, X.: You only look yourself: unsupervised and untrained single image dehazing neural network. Int. J. Comput. Vision 129(5), 1754–1767 (2021). https://doi.org/10.1007/s11263-021-01431-5

    Article  Google Scholar 

  19. Li, C., Anwar, S., Hou, J., Cong, R., Guo, C., Ren, W.: Underwater image enhancement via medium transmission-guided multi-color space embedding. IEEE Trans. Image Process. 30, 4985–5000 (2021)

    Article  Google Scholar 

  20. Li, C., Anwar, S., Porikli, F.: Underwater scene prior inspired deep underwater image and video enhancement. Pattern Recogn. 98, 107038 (2020). https://doi.org/10.1016/j.patcog.2019.107038. https://www.sciencedirect.com/science/article/pii/S0031320319303401

  21. Li, C., et al.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2020). https://doi.org/10.1109/TIP.2019.2955241

    Article  MATH  Google Scholar 

  22. Li, R., Pan, J., Li, Z., Tang, J.: Single image dehazing via conditional generative adversarial network. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8202–8211 (2018). https://doi.org/10.1109/CVPR.2018.00856

  23. Liu, Y., Rong, S., Cao, X., Li, T., He, B.: Underwater image dehazing using the color space dimensionality reduction prior. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 1013–1017 (2020). https://doi.org/10.1109/ICIP40778.2020.9190901

  24. Ma, Z., Oh, C.: A wavelet-based dual-stream network for underwater image enhancement. In: ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2769–2773 (2022). https://doi.org/10.1109/ICASSP43922.2022.9747781

  25. Mallet, D., Pelletier, D.: Underwater video techniques for observing coastal marine biodiversity: a review of sixty years of publications (1952–2012). Fish. Res. 154, 44–62 (2014)

    Article  Google Scholar 

  26. McIntosh, D.G., Porto Marques, T., Branzan Albu, A., Rountree, R., De Leo Cabrera, F.: Movement tracks for the automatic detection of fish behavior in videos. In: NeurIPS 2020 Workshop on Tackling Climate Change with Machine Learning (2020). https://www.climatechange.ai/papers/neurips2020/36

  27. Peng, Y.T., Cosman, P.: Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 26, 1579–1594 (2017). https://doi.org/10.1109/TIP.2017.2663846

    Article  MathSciNet  MATH  Google Scholar 

  28. Marques, T.P., Albu, A.B.: L2UWE: a framework for the efficient enhancement of low-light underwater images using local contrast and multi-scale fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 538–539 (2020)

    Google Scholar 

  29. Porto Marques, T., Branzan Albu, A., Hoeberechts, M.: A contrast-guided approach for the enhancement of low-lighting underwater images. J. Imaging 5(10), 79 (2019)

    Article  Google Scholar 

  30. Sara, U., Akter, M., Uddin, M.S.: Image quality assessment through FSIM, SSIM, MSE and PSNR-a comparative study. J. Comput. Commun. 7(3), 8–18 (2019)

    Article  Google Scholar 

  31. Sathya, R., Bharathi, M., Dhivyasri, G.: Underwater image enhancement by dark channel prior. In: 2015 2nd International Conference on Electronics and Communication Systems (ICECS), pp. 1119–1123 (2015). https://doi.org/10.1109/ECS.2015.7124757

  32. Setiadi, D.R.I.M.: PSNR vs SSIM: imperceptibility quality assessment for image steganography. Multimedia Tools Appl. 80(6), 8423–8444 (2021)

    Article  Google Scholar 

  33. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015). https://doi.org/10.1109/TIP.2015.2446191

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Rico Espinosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Espinosa, A.R., McIntosh, D., Albu, A.B. (2023). Unsupervised Deep-Learning Approach for Underwater Image Enhancement. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14362. Springer, Cham. https://doi.org/10.1007/978-3-031-47966-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47966-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47965-6

  • Online ISBN: 978-3-031-47966-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics