Skip to main content

Pothole Segmentation and Area Estimation with Deep Neural Networks and Unmanned Aerial Vehicles

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2023)

Abstract

In this research, we explore the problems of pothole detection, segmentation, and area estimation using deep neural networks and unmanned aerial vehicles (drones). We start by compiling two datasets, one that contains ground-level and aerial images of potholes, and another that only contains ground-level images, and we train a total of six deep neural network models for pothole detection; we do this to determine whether aerial images are necessary for training UAV-based object detection models. We then determine which pothole detection model is the most accurate and we also determine which combinations of camera angle and UAV altitude are best for detecting potholes. Furthermore, we take the strongest pothole segmentation model and apply it to area estimation using a combination of homography, the intrinsic and extrinsic parameters of the UAV camera, and novel methods. Our method for pothole area estimation using YOLOv8 has an average area estimation error of 9.71%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/TSUrobotics/UAVpotholes.

  2. 2.

    https://github.com/ultralytics/ultralytics.

  3. 3.

    https://github.com/MegEngine/YOLOX.

  4. 4.

    https://github.com/matterport/Mask_RCNN.

  5. 5.

    https://www.youtube.com/@robotperception6035.

References

  1. AAA: https://newsroom.aaa.com/2022/03/aaa-potholes-pack-a-punch-as-drivers-pay-26-5-billion-in-related-vehicle-repairs/ (2023)

  2. Abbas, S.A., Zisserman, A.: A geometric approach to obtain a bird’s eye view from an image. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 4095–4104 (2019). https://doi.org/10.1109/ICCVW.2019.00504

  3. Asad, M.H., Khaliq, S., Yousaf, M.H., Ullah, M.O., Ahmad, A.: Pothole detection using deep learning: a real-time and AI-on-the-edge perspective. Adv. Civil Eng. 2022, 1–13 (2022)

    Article  Google Scholar 

  4. SB, B.K., Guhan, S., Kishore, M., Santhosh, R.: Real-time pothole detection using YOLOv5 algorithm: a feasible approach for intelligent transportation systems. In: 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), pp. 1678–1683 (2023)

    Google Scholar 

  5. De Zoysa, K., Keppitiyagama, C., Seneviratne, G.P., Shihan, W.: A public transport system based sensor network for road surface condition monitoring. In: Proceedings of the 2007 Workshop on Networked Systems for Developing Regions, pp. 1–6 (2007)

    Google Scholar 

  6. Diamantas, S., Alexis, K.: Modeling pixel intensities with log-normal distributions for background subtraction. In: IEEE International Conference on Imaging Systems and Techniques, Beijing, China, pp. 1–6 (2017)

    Google Scholar 

  7. Diamantas, S., Alexis, K.: Optical flow based background subtraction with a moving camera: application to autonomous driving. In: Bebis, G., et al. (eds.) ISVC 2020. LNCS, vol. 12510, pp. 398–409. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64559-5_31

    Chapter  Google Scholar 

  8. Eriksson, J., Girod, L., Hull, B., Newton, R., Madden, S., Balakrishnan, H.: The pothole patrol: using a mobile sensor network for road surface monitoring. In: Proceedings of the 6th International Conference on Mobile Systems, Applications, and Services, pp. 29–39 (2008)

    Google Scholar 

  9. Eriksson, L.H..S.: An Investigation of detecting potholes with UAV LiDAR and UAV Photogrammetry. Ph.D. thesis, University of Gavle (2021)

    Google Scholar 

  10. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: Exceeding yolo series in 2021 (2021)

    Google Scholar 

  11. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017). https://doi.org/10.1109/ICCV.2017.322

  12. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (2023). https://github.com/ultralytics/ultralytics

  13. Kang, B.H., Choi, S.i.: Pothole detection system using 2d lidar and camera. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 744–746 (2017)

    Google Scholar 

  14. Kharel, S., Ahmed, K.R.: Potholes detection using deep learning and area estimation using image processing. In: Intelligent Systems with Applications (2021)

    Google Scholar 

  15. Lin, T., et al.: Microsoft COCO: common objects in context. CoRR abs/1405.0312 (2014). http://arxiv.org/abs/1405.0312

  16. Peralta-Lopez, J.E., et al.: Speed bump and pothole detection using deep neural network with images captured through zed camera. Appl. Sci. 8349, 1–17 (2023)

    Google Scholar 

  17. Prasad, V., Kumari, S.: Pothole detection using lidar. Adv. Automob. Eng. 10, 1–3 (2021)

    Google Scholar 

  18. Shaghouri, A.A., Alkhatib, R., Berjaoui, S.: Real-time pothole detection using deep learning, pp. 1–10 (2021). https://arxiv.org/abs/2107.06356

  19. Silvister, S., et al.: Deep learning approach to detect potholes in real-time using smartphone. In: 2019 IEEE Pune Section International Conference (PuneCon), pp. 1–4 (2019)

    Google Scholar 

  20. Welborn, E.A.: Detecting Potholes Using Deep Neural Networks with Unmanned Aerial Vehicles. Ph.D. thesis, Tarleton State University (2023)

    Google Scholar 

  21. Wu, C., et al.: An automated machine-learning approach for road pothole detection using smartphone sensor data. Sensors 20, 1–23 (2020)

    Google Scholar 

  22. Yik, Y.K., Alias, N.E., Yusof, Y., Isaak, S.: A real-time pothole detection based on deep learning approach. J. Phys.: Conf. Ser., 1–7 (2021)

    Google Scholar 

  23. Yu, B.X., Yu, X.: Vibration-based system for pavement condition evaluation. In: Applications of Advanced Technology in Transportation, pp. 183–189 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan Welborn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Welborn, E., Diamantas, S. (2023). Pothole Segmentation and Area Estimation with Deep Neural Networks and Unmanned Aerial Vehicles. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14362. Springer, Cham. https://doi.org/10.1007/978-3-031-47966-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47966-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47965-6

  • Online ISBN: 978-3-031-47966-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics