Skip to main content

Evaluating Segmentation Approaches on Digitized Herbarium Specimens

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2023)

Abstract

Herbarium specimens form a physical database of plant biodiversity. They are frequently used to study species diversity in different geographic regions or their evolution over time. These specimens have been digitized in bulk and made accessible to the public over the past few decades. These digitization efforts open up new research opportunities for automated processing and analysis. However, few publicly available labeled datasets for herbarium specimens exist. This work introduces a novel instance segmentation dataset of 250 digitized herbarium specimens from a diverse selection of herbaria. We experimented with several segmentation approaches on this dataset and discuss their strengths and limitations. For binary plant segmentation, U-Net and UNet++ achieved IoUs of 0.950 and 0.951, respectively. Popular instance segmentation models could accurately detect common herbaria objects with mask APs between 78.3 and 84.1 but typically struggled with the plant class. Only Mask2Former showed promising results on the plant class, achieving a mask AP of 77.0. Because most herbarium sheets contain a single specimen, the problem was also reformulated as a panoptic segmentation task, treating the plant class as a semantic class. In this context, a combination of YOLOv8 and UNet++ outperformed the Mask2Former model, achieving a higher IoU for the plant class and a higher mask AP for the non-plant objects. The dataset and code are available at: https://github.com/kymillev/herbarium-segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.gbif.org/.

  2. 2.

    https://www.idigbio.org/.

  3. 3.

    https://cocodataset.org/#detection-eval.

References

  1. Abdelaziz, B.: Walid: a deep learning-based approach for detecting plant organs from digitized herbarium specimen images. Eco. Inform. 69, 101590 (2022). https://doi.org/10.1016/j.ecoinf.2022.101590. https://www.sciencedirect.com/science/article/pii/S1574954122000395

  2. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  3. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1290–1299 (2022)

    Google Scholar 

  4. Dillen, M., et al.: A benchmark dataset of herbarium specimen images with label data. Biodiversity Data J. (7) (2019)

    Google Scholar 

  5. Gaikwad, J., Triki, A., Bouaziz, B.: Measuring morphological functional leaf traits from digitized herbarium specimens using Traitex software. Biodiversity Inf. Sci. Standards 3, e37091 (2019). https://doi.org/10.3897/biss.3.37091

    Article  Google Scholar 

  6. Goëau, H., Bonnet, P., Joly, A.: Overview of lifeCLEF plant identification task 2020. In: CLEF 2020-Conference and Labs of the Evaluation Forum, vol. 2696 (2020)

    Google Scholar 

  7. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  8. Hussein, B.R., Malik, O.A., Ong, W.-H., Slik, J.W.F.: Semantic segmentation of herbarium specimens using deep learning techniques. In: Alfred, R., Lim, Y., Haviluddin, H., On, C.K. (eds.) Computational Science and Technology. LNEE, vol. 603, pp. 321–330. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0058-9_31

    Chapter  Google Scholar 

  9. Jain, J., Li, J., Chiu, M.T., Hassani, A., Orlov, N., Shi, H.: OneFormer: one transformer to rule universal image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2989–2998 (2023)

    Google Scholar 

  10. Jocher, G., Chaurasia, A., Qiu, J.: YOLO by Ultralytics (2023). https://github.com/ultralytics/ultralytics

  11. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9404–9413 (2019)

    Google Scholar 

  12. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  13. Kirillov, A., Wu, Y., He, K., Girshick, R.: PointRend: image segmentation as rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9799–9808 (2020)

    Google Scholar 

  14. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  15. Milleville, K., Thirukokaranam Chandrasekar, K.K., Verstockt, S.: Automatic extraction of specimens from multi-specimen herbaria. ACM J. Comput. Cultural Heritage 16(1), 1–15 (2023)

    Article  Google Scholar 

  16. Owen, D., et al.: Towards a scientific workflow featuring natural language processing for the digitisation of natural history collections. Res. Ideas Outcomes 6, e55789 (2020). https://doi.org/10.3897/rio.6.e55789

    Article  Google Scholar 

  17. Pearson, K.D., et al.: Machine learning using digitized herbarium specimens to advance phenological research. BioScience 70(7), 610–620 (2020). https://doi.org/10.1093/biosci/biaa044

    Article  Google Scholar 

  18. Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks for semantic segmentation in street scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4151–4160 (2017)

    Google Scholar 

  19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR (2019). https://proceedings.mlr.press/v97/tan19a.html

  22. Thiers, B.M.: The world’s herbaria 2021: a summary report based on data from index herbariorum (2022). https://sweetgum.nybg.org/science/wp-content/uploads/2022/02/The_Worlds_Herbaria_Jan_2022.pdf

  23. Thiers, B.M., Tulig, M.C., Watson, K.A.: Digitization of the New York botanical garden herbarium. Brittonia 68, 324–333 (2016)

    Article  Google Scholar 

  24. Triki, A., Bouaziz, B., Gaikwad, J., Mahdi, W.: Deep leaf: mask R-CNN based leaf detection and segmentation from digitized herbarium specimen images. Pattern Recogn. Lett. 150, 76–83 (2021)

    Article  Google Scholar 

  25. Wada, K.: Labelme: Image Polygonal Annotation with Python. https://github.com/wkentaro/labelme

  26. White, A.E., Dikow, R.B., Baugh, M., Jenkins, A., Frandsen, P.B.: Generating segmentation masks of herbarium specimens and a data set for training segmentation models using deep learning. Appl. Plant Sci. 8(6), e11352 (2020)

    Article  Google Scholar 

  27. Wilson, R.J., et al.: Applying computer vision to digitised natural history collections for climate change research: temperature-size responses in British butterflies. Methods Ecol. Evol. 14(2), 372–384 (2023)

    Article  Google Scholar 

  28. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  29. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgements

The research activities described in this paper were funded by Ghent University, Imec, and the DiSSCo Flanders project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenzo Milleville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milleville, K., Chandrasekar, K.K.T., Van de Weghe, N., Verstockt, S. (2023). Evaluating Segmentation Approaches on Digitized Herbarium Specimens. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14362. Springer, Cham. https://doi.org/10.1007/978-3-031-47966-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47966-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47965-6

  • Online ISBN: 978-3-031-47966-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics