Skip to main content

Self-supervised Representation Learning for Fine Grained Human Hand Action Recognition in Industrial Assembly Lines

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14361))

Included in the following conference series:

  • 455 Accesses

Abstract

Humans are still indispensable on industrial assembly lines, but in the event of an error, they need support from intelligent systems. In addition to the objects to be observed, it is equally important to understand the fine-grained hand movements of a human to be able to track the entire process. However, these deep learning based hand action recognition methods are very label intensive, which cannot be offered by all industrial companies due to the associated costs. This work therefore presents a self-supervised learning approach for industrial assembly processes that allows a spatio-temporal transformer architecture to be pre-trained on a variety of information from real-world video footage of daily life. Subsequently, this deep learning model is adapted to the industrial assembly task at hand using only a few labels. It is shown which known real-world datasets are best suited for representation learning of these hand actions in a regression task, and to what extent they optimize the subsequent supervised trained classification task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Autoencoders, S.D.: Learning useful representations in a deep network with a local denoising criterion, Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio and Pierre-Antoine Manzagol. J. Mach. Learn. Res. ll, 3371–3408 (2010)

    Google Scholar 

  2. Cao, S., Xu, P., Clifton, D.A.: How to understand masked autoencoders. arXiv preprint arXiv:2202.03670 (2022)

  3. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423

  4. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale (2021)

    Google Scholar 

  5. Feichtenhofer, C., Li, Y., He, K., et al.: Masked autoencoders as spatiotemporal learners. Adv. Neural. Inf. Process. Syst. 35, 35946–35958 (2022)

    Google Scholar 

  6. Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense (2017). https://doi.org/10.48550/ARXIV.1706.04261, https://arxiv.org/abs/1706.04261

  7. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000–16009 (2022)

    Google Scholar 

  8. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUS). arXiv preprint arXiv:1606.08415 (2016)

  9. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015. JMLR Workshop and Conference Proceedings, vol. 37, pp. 448–456. JMLR.org (2015). https://proceedings.mlr.press/v37/ioffe15.html

  11. Li, Y., Si, S., Li, G., Hsieh, C.J., Bengio, S.: Learnable fourier features for multi-dimensional spatial positional encoding (2021)

    Google Scholar 

  12. Li, Y., Liu, M., Rehg, J.M.: In the eye of the beholder: gaze and actions in first person video (2020). https://doi.org/10.48550/ARXIV.2006.00626, https://arxiv.org/abs/2006.00626

  13. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. CoRR abs/1612.03144 (2016). http://arxiv.org/abs/1612.03144

  14. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. CoRR abs/1708.02002 (2017). http://arxiv.org/abs/1708.02002

  15. Liu, M., Ren, S., Ma, S., Jiao, J., Chen, Y., Wang, Z., Song, W.: Gated transformer networks for multivariate time series classification. CoRR abs/2103.14438 (2021). https://arxiv.org/abs/2103.14438

  16. Mahdisoltani, F., Berger, G., Gharbieh, W., Fleet, D.J., Memisevic, R.: Fine-grained video classification and captioning. CoRR abs/1804.09235 (2018). http://arxiv.org/abs/1804.09235

  17. Ng, A.: Sparse autoencoder (NA). https://www.stanford.edu/class/cs294a/sparseAutoencoder.pdf

  18. Sturm, F., Hergenroether, E., Reinhardt, J., Vojnovikj, P.S., Siegel, M.: Challenges of the creation of a dataset for vision based human hand action recognition in industrial assembly. In: Arai, K. (ed.) SAI 2023. LNNS, vol. 711, pp. 1079–1098. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37717-4_70

    Chapter  Google Scholar 

  19. Tang, P., Zhang, X.: MTSMAE: masked autoencoders for multivariate time-series forecasting. In: 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 982–989. IEEE (2022)

    Google Scholar 

  20. Tong, Z., Song, Y., Wang, J., Wang, L.: VideoMAE: masked autoencoders are data-efficient learners for self-supervised video pre-training. Adv. Neural. Inf. Process. Syst. 35, 10078–10093 (2022)

    Google Scholar 

  21. Trockman, A., Kolter, J.Z.: Patches are all you need? Trans. Mach. Learn. Res. 2023 (2022)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  23. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008). https://doi.org/10.1145/1390156.1390294

  24. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010)

    Google Scholar 

  25. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 98–106 (2016)

    Google Scholar 

  26. Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., Murphy, K.: Tracking emerges by colorizing videos. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 391–408 (2018)

    Google Scholar 

  27. Wu, W., Hua, Y., Wu, S., Chen, C., Lu, A., et al.: SkeletonMAE: spatial-temporal masked autoencoders for self-supervised skeleton action recognition. arXiv preprint arXiv:2209.02399 (2022)

  28. Xie, Z., et al.: SimMIM: a simple framework for masked image modeling. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9643–9653 (2021)

    Google Scholar 

  29. Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., Eickhoff, C.: A transformer-based framework for multivariate time series representation learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2114–2124 (2021)

    Google Scholar 

  30. Zhang, F., et al.: MediaPipe hands: on-device real-time hand tracking. CoRR abs/2006.10214 (2020). https://arxiv.org/abs/2006.10214

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Sturm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sturm, F., Sathiyababu, R., Allipilli, H., Hergenroether, E., Siegel, M. (2023). Self-supervised Representation Learning for Fine Grained Human Hand Action Recognition in Industrial Assembly Lines. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14361. Springer, Cham. https://doi.org/10.1007/978-3-031-47969-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47969-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47968-7

  • Online ISBN: 978-3-031-47969-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics