Skip to main content

Deep Learning Based GABA Edited-MRS Signal Reconstruction

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2023)

Abstract

Magnetic Resonance Spectroscopy (MRS) is a non-invasive imaging technique based on nuclear magnetic resonance (NMR) principles. It analyzes the biochemical composition and metabolic processes of body tissues. Edited MRS Reconstruction converts raw MRS data into meaningful spectrum signals, providing valuable insights into cellular metabolism, organ function, and energy production. This process can help understand normal physiology, diagnose diseases, and monitor their progression. Additionally, it enables the extraction of metabolite concentrations, even when hidden by other biochemical compounds with higher concentrations (e.g., gamma-aminobutyric acid, glutamate, and glutamine). This study proposes a dual encoder head self-attention-based deep learning model to reconstruct the Edited MRS signal for acquiring GABA concentration and benchmark the model’s performance on simulated raw MRS data from real GABA-edited ground truths. Our model achieves a 95% decrease in Mean Squared Error (MSE), a 70% decrease in Linewidth, a 450% increase in Signal to Noise Ratio (SNR), and a 42% increase in Peak Shape Score compared to the current existing method on the test set. We also illustrate our qualitative results, demonstrating our method’s robust and accurate predictions compared to the ground truth. Our approach can help deliver rapid diagnosis and monitoring of neurological disorders, metabolic diseases, and certain types of cancers by providing refined and accurate data on metabolite concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://cumming.ucalgary.ca/labs/harris-imaging/home

  2. Allen, D.M.: Mean square error of prediction as a criterion for selecting variables. Technometrics 13(3), 469–475 (1971)

    Article  MATH  Google Scholar 

  3. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  4. Chan, K.L., Puts, N.A., Schär, M., Barker, P.B., Edden, R.A.: HERMES: Hadamard encoding and reconstruction of mega-edited spectroscopy. Magn. Reson. Med. 76(1), 11–19 (2016)

    Article  Google Scholar 

  5. Cohen, I., et al.: Pearson correlation coefficient. In: Noise reduction in speech processing. Springer Topics in Signal Processing, vol. 2, pp. 1–4. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00296-0_5

  6. Di Costanzo, A., et al.: Proton MR spectroscopy of the brain at 3 T: an update. Eur. Radiol. 17, 1651–1662 (2007)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  8. Huang, S., Wang, D., Wu, X., Tang, A.: DSANet: dual self-attention network for multivariate time series forecasting. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2129–2132 (2019)

    Google Scholar 

  9. Iqbal, Z., Nguyen, D., Thomas, M.A., Jiang, S.: Deep learning can accelerate and quantify simulated localized correlated spectroscopy. Sci. Rep. 11(1), 8727 (2021)

    Article  Google Scholar 

  10. Johnson, D.H.: Signal-to-noise ratio. Scholarpedia 1(12), 2088 (2006)

    Article  Google Scholar 

  11. Kaiser, L., Young, K., Meyerhoff, D., Mueller, S., Matson, G.: A detailed analysis of localized J-difference GABA editing: theoretical and experimental study at 4 T. NMR Biomed. Int. J. Devoted Develop. Appl. Magn. Reson. In vivo 21(1), 22–32 (2008)

    Google Scholar 

  12. Kumar Reddy, A.N., Sagar, D.K.: Half-width at half-maximum, full-width at half-maximum analysis for resolution of asymmetrically apodized optical systems with slit apertures. Pramana 84, 117–126 (2015)

    Article  Google Scholar 

  13. Mescher, M., Merkle, H., Kirsch, J., Garwood, M., Gruetter, R.: Simultaneous in vivo spectral editing and water suppression. NMR Biomed. Int. J. Devoted Develop. Appl. Magn. Reson. In Vivo 11(6), 266–272 (1998)

    Google Scholar 

  14. Mikkelsen, M., Loo, R.S., Puts, N.A., Edden, R.A., Harris, A.D.: Designing GABA-edited magnetic resonance spectroscopy studies: considerations of scan duration, signal-to-noise ratio and sample size. J. Neurosci. Meth. 303, 86–94 (2018)

    Article  Google Scholar 

  15. Nagi, J., et al.: Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 342–347. IEEE (2011)

    Google Scholar 

  16. Nussbaumer, H.J., Nussbaumer, H.J.: The fast Fourier transform. In: Fast Fourier Transform and Convolution Algorithms. Springer Series in Information Sciences, vol. 2, pp. 80–111. Springer, Heidelberg (1981). https://doi.org/10.1007/978-3-642-81897-4_4

  17. O’Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  18. Petroff, O.A.: Book review: GABA and glutamate in the human brain. Neuroscientist 8(6), 562–573 (2002)

    Article  Google Scholar 

  19. Puts, N.A., Edden, R.A.: In vivo magnetic resonance spectroscopy of GABA: a methodological review. Prog. Nucl. Magn. Reson. Spectrosc. 60, 29 (2012)

    Article  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Saleh, M.G., et al.: Simultaneous edited MRS of GABA and glutathione. Neuroimage 142, 576–582 (2016)

    Article  Google Scholar 

  22. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  23. Tao, W., et al.: EEG-based emotion recognition via channel-wise attention and self attention. IEEE Trans. Affect. Comput. (2020)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  25. Wang, Y., Yang, G., Li, S., Li, Y., He, L., Liu, D.: Arrhythmia classification algorithm based on multi-head self-attention mechanism. Biomed. Signal Process. Control 79, 104206 (2023)

    Article  Google Scholar 

  26. Wei, S., Qu, Q., Zeng, X., Liang, J., Shi, J., Zhang, X.: Self-attention Bi-LSTM networks for radar signal modulation recognition. IEEE Trans. Microw. Theory Tech. 69(11), 5160–5172 (2021)

    Article  Google Scholar 

  27. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30(1), 79–82 (2005)

    Article  Google Scholar 

  28. Yang, X., Zhao, J., Sun, Q., Lu, J., Ma, X.: An effective dual self-attention residual network for seizure prediction. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 1604–1613 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dikshant Sagar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sagar, D., Mohammadi, F., Pourhomayoun, M., Joen, J., Amini, N. (2023). Deep Learning Based GABA Edited-MRS Signal Reconstruction. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14361. Springer, Cham. https://doi.org/10.1007/978-3-031-47969-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47969-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47968-7

  • Online ISBN: 978-3-031-47969-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics