Abstract
The problem of recovering the shape of a curve given partial information about it is a fundamental problem in many applications in visual computing. Which types of curves are fitted to a given input data depends on the application and varies from piece-wise linear approximation to parametric splines. The choice of approximation method depends on the context of the problem, the nature of the data, and the desired level of accuracy and complexity.
In this paper we introduce SwarmCurves, a curve reconstruction approach based on particle swarm optimization. For given input data SwarmCurves offers a range of solutions, from linear polygons to rational B-Splines with various degrees of freedom. The algorithm works on dense, sparse or noisy, 2D or 3D input data. We demonstrate the performance of SwarmCurves, on a number of examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, L., Ghosh, S.K.: Uncertainty quantification and estimation of closed curves based on noisy data. Comput. Stat. 36, 2161–2176 (2021)
Chiong, R., Weise, T., Michalewicz, Z.: Variants of Evolutionary Algorithms for Real-World Applications. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23424-8
Cipolla, S., Di Fiore, C., Tudisco, F., Zellini, P.: Adaptive matrix algebras in unconstrained minimization. Linear Algebra Appl. 471, 544–568 (2015)
De Boor, C., Rice, J.R.: Least squares cubic spline approximation i-fixed knots. International Mathematical and Statistical Libraries (1968)
De Boor, C., Rice, J.R.: Least squares cubic spline approximation, ii-variable knots. International Mathematical and Statistical Libraries (1968)
Ebrahimi, A., Loghmani, G.B.: B-spline curve fitting by diagonal approximation BFGS methods. Iran. J. Sci. Technol. Trans. A Sci. 43, 947–958 (2019)
Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A.H.: Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2021)
Farin, G.: Curves and Surfaces for CAGD. Morgan Kaufmann, San Fransisco (2002)
Gálvez, A., Cobo, A., Puig-Pey, J., Iglesias, A.: Particle swarm optimization for Bézier surface reconstruction. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008. LNCS, vol. 5102, pp. 116–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69387-1_13
Gálvez, A., Iglesias, A., Cobo, A., Puig-Pey, J., Espinola, J.: Bézier curve and surface fitting of 3D point clouds through genetic algorithms, functional networks and least-squares approximation. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007. LNCS, vol. 4706, pp. 680–693. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74477-1_62
Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)
Houssein, E.H., Gad, A.G., Hussain, K., Suganthan, P.N.: Major advances in particle swarm optimization: theory, analysis, and application. Swarm Evol. Comput. 63, 100868 (2021)
Iglesias, A., Gálvez, A., Collantes, M.: Multilayer embedded bat algorithm for B-spline curve reconstruction. Integr. Comput.-Aided Eng. 24(4), 385–399 (2017)
Kaveh, A., Dadras Eslamlou, A.: Water strider algorithm: a new metaheuristic and applications. Structures 25, 520–541 (2020)
Kavita, K., Navin, R., Madan, A.S.: Piecewise feature extraction and artificial neural networks: an approach towards curve reconstruction. Indian J. Sci. Technol. 9(28), 121–134 (2016)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)
Lee, I.K.: Curve reconstruction from unorganized points. Comput. Aided Geom. Des. 17(2), 161–177 (2000)
Lin, H., Chen, W., Wang, G.: Curve reconstruction based on an interval B-spline curve. Vis. Comput. 21, 418–427 (2005)
Liu, Y., D’Aronco, S., Schindler, K., Wegner, J.D.: PC2WF: 3D wireframe reconstruction from raw point clouds. arXiv preprint arXiv:2103.02766 (2021)
Matveev, A., et al.: DEF: Deep estimation of sharp geometric features in 3D shapes. ACM Trans. Graph. 41(4) (2022)
Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
Ohrhallinger, S., Peethambaran, J., Parakkat, A.D., Dey, T.K., Muthuganapathy, R.: 2D points curve reconstruction survey and benchmark. In: Computer Graphics Forum, vol. 40, pp. 611–632. Wiley Online Library (2021)
Ostertagová, E.: Modelling using polynomial regression. Procedia Eng. 48, 500–506 (2012). Modelling of Mechanical and Mechatronics Systems
Park, H., Lee, J.: B-spline curve fitting based on adaptive curve refinement using dominant points. Comput. Aided Des. 39, 439–451 (2007)
Park, H.: An error-bounded approximate method for representing planar curves in B-splines. Comput. Aided Geom. Des. 21, 479–497 (2004)
Shami, T.M., El-Saleh, A.A., Alswaitti, M., Al-Tashi, Q., Summakieh, M.A., Mirjalili, S.: Particle swarm optimization: a comprehensive survey. IEEE Access 10, 10031–10061 (2022)
Song, B., Wang, Z., Zou, L.: An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve. Appl. Soft Comput. 100, 106960 (2021)
Sun, C., Liu, M., Ge, S.: B-spline curve fitting of hungry predation optimization on ship line design. Appl. Sci. 12(19), 9465 (2022)
Varady, T., Martin, R., Cox, J.: Reverse engineering of geometric models - an introduction. Comput. Aided Des. 29(4), 255–268 (1997)
Wang, X., et al.: PIE-NET: parametric inference of point cloud edges. In: Advances in Neural Information Processing Systems, vol. 33, pp. 20167–20178. Curran Associates, Inc. (2020)
Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J. Comput. Des. Eng. 3(1), 24–36 (2015)
Ye, Y., Yi, R., Gao, Z., Zhu, C., Cai, Z., Xu, K.: NEF: neural edge fields for 3D parametric curve reconstruction from multi-view images (2023)
Yilmaz, S., Sen, S.: Electric fish optimization: a new heuristic algorithm inspired by electrolocation. Neural Comput. Appl. 32(15), 11543–11578 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Komar, A., Augsdörfer, U. (2023). SwarmCurves: Evolutionary Curve Reconstruction. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14361. Springer, Cham. https://doi.org/10.1007/978-3-031-47969-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-47969-4_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47968-7
Online ISBN: 978-3-031-47969-4
eBook Packages: Computer ScienceComputer Science (R0)