Skip to main content

Investigating the Impact of Attention on Mammogram Classification

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2023)

Abstract

Attention, one of the most important features of modern CNNs, has been shown to improve the performance of mammogram classification, but our understanding of why attention offers improvements is rather limited. In this paper, we present the first comprehensive comparison of different combinations of baseline models and attention methods at multiple resolutions for whole mammogram image classification of masses and calcifications. Our findings indicate that attention generally helps to improve the baseline model scores, but the benefits are variable depending on the resolution and abnormality type. Furthermore, we find that pooling and overall model architecture (i.e., combination of baseline and attention) significantly impact mammogram classification scores. Specifically, scores are generally improved by architectural features that allow the model to retain as much information as possible while still focusing on relevant features. We also find that attention improves the correlation between model performance and LayerCAM activation in the region of interest. Our work provides insightful information to help guide the future construction of attention-based models for mammogram classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, M.H., et al.: Attention mechanisms in computer vision: a survey. Comp. Visual Media 8(5), 331–368 (2022)

    Article  MathSciNet  Google Scholar 

  2. Datta, S.K., Shaikh, M.A., Srihari, S.N., Gao, M.: Soft attention improves skin cancer classification performance. In: Reyes, M., et al. (eds.) IMIMIC/TDA4MedicalData -2021. LNCS, vol. 12929, pp. 13–23. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87444-5_2

    Chapter  Google Scholar 

  3. Zhang, K., Wang, W., Lv, Z., Fan, Y., Song, Y.: Computer vision detection of foreign objects in coal processing using attention CNN. Eng. Appl. Artif. Intell. 102, 104242 (2021)

    Article  Google Scholar 

  4. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 603–612, Seoul, Korea (South) (2019)

    Google Scholar 

  5. Anaya-Isaza, A., Mera-Jiménez, L., Zequera-Diaz, M.: An overview of deep learning in medical imaging. Inform. Med. Unlocked 26, 100723 (2021)

    Article  Google Scholar 

  6. Hassan, N.M., Hamad, S., Mahar, K.: Mammogram breast cancer CAD systems for mass detection and classification: a review. Multimed Tools Appl 81, 20043–20075 (2022)

    Article  Google Scholar 

  7. Altan, G.: Deep learning-based mammogram classification for breast cancer. Int. J. Intell. Syst. Appl. Eng. 8(4), 171–176 (2020)

    Article  Google Scholar 

  8. Shen, L., Margolies, L.R., Rothstein, J.H., et al.: Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 9, 12495 (2019)

    Article  Google Scholar 

  9. Azad, R., Asadi-Aghbolaghi, M., Fathy, M., Escalera, S.: Attention Deeplabv3+: multi-level context attention mechanism for skin lesion segmentation. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12535, pp. 251–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66415-2_16

    Chapter  Google Scholar 

  10. Lou, Q., Li, Y., Qian, Y., Lu, F., Ma, J.: Mammogram classification based on a novel convolutional neural network with efficient channel attention. Comput. Biol. Med. 150, 106082 (2022)

    Article  Google Scholar 

  11. Xu, C., Lou, M., Qi, Y., Wang, Y., Pi, J., Ma, Y.: Multi-Scale Attention-Guided Network for mammograms classification. Biomed. Signal Process. Control 68, 102730 (2021)

    Article  Google Scholar 

  12. Lee, R., et al.: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci Data 4, 170177 (2017)

    Article  Google Scholar 

  13. Saunders, R.S., Jr., Baker, J.A., Delong, D.M., Johnson, J.P., Samei, E.: Does image quality matter? Impact of resolution and noise on mammographic task performance. Med. Phys. 34(10), 3971–81 (2007)

    Article  Google Scholar 

  14. Abdel-Nasser, M., Melendez, J., Moreno, A., Puig, D.: The impact of pixel resolution, integration scale, preprocessing, and feature normalization on texture analysis for mass classification in mammograms. Int. J. Optics 2016, 1370259 (2016)

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  17. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10425–10433, Seattle, WA, USA (2020)

    Google Scholar 

  18. Chen, Y., Zhang, Q., Wu, Y., Liu, B., Wang, M., Lin, Y.: Fine-tuning resnet for breast cancer classification from mammography. In: Wu, C.Q., Chyu, M.-C., Lloret, J., Li, X. (eds.) ICHSE 2018. LNEE, vol. 536, pp. 83–96. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-6837-0_7

    Chapter  Google Scholar 

  19. Al-Antari, M.A., Al-Masni, M.A., Kim, T.S.: Deep learning computer-aided diagnosis for breast lesion in digital mammogram. Adv. Exp. Med. Biol. 1213, 59–72 (2020)

    Article  Google Scholar 

  20. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141, Salt Lake City, UT, USA (2018)

    Google Scholar 

  21. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11531–11539, Seattle, WA, USA (2020)

    Google Scholar 

  22. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  23. Kebria, P.M., et al.: Deep imitation learning: the impact of depth on policy performance. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 172–181. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04167-0_16

    Chapter  Google Scholar 

  24. Rice, L., Wong, E., Kolter, Z.: Overfitting in adversarially robust deep learning. In International Conference on Machine Learning, pp. 8093–8104, PMLR (2020)

    Google Scholar 

  25. Li, Z., Gu, T., Li, B., Xu, W., He, X., Hui, X.: ConvNeXt-based fine-grained image classification and bilinear attention mechanism model. Appl. Sci. 12(18), 9016 (2022)

    Article  Google Scholar 

  26. Hang, W., Liu, Z., Hannun, A.: GlimpseNet: attentional methods for full-image mammogram diagnosis. Proceedings (2017)

    Google Scholar 

  27. Doimo, D., Glielmo, A., Goldt, S., Laio, A.: Redundant representations help generalization in wide neural networks. Adv. Neural. Inf. Process. Syst. 35, 19659–19672 (2020)

    Google Scholar 

  28. Yu, S., Jia, S., Xu, C.: Convolutional neural networks for hyperspectral image classification. Neurocomputing 219, 88–98 (2017)

    Article  Google Scholar 

  29. Jiang, P.T., Zhang, C.B., Hou, Q., Cheng, M.M., Wei, Y.: LayerCAM: exploring hierarchical class activation maps for localization. IEEE Trans. Image Process. 30, 5875–5888 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Berghouse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berghouse, M., Bebis, G., Tavakkoli, A. (2023). Investigating the Impact of Attention on Mammogram Classification. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14361. Springer, Cham. https://doi.org/10.1007/978-3-031-47969-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47969-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47968-7

  • Online ISBN: 978-3-031-47969-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics