Skip to main content

Visualizing Multimodal Time Series at Scale

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14361))

Included in the following conference series:

  • 890 Accesses

Abstract

Today digital recording technology empowers us to understand real-world behaviors with high quality and high definition multimodal time series data. Making the presentation of these time series fit for analysis purpose, at the right scale and resolution, has become a leading data visualization challenge. In this paper, we present TimeXplore, a novel visual analysis tool to aid the exploration of time series at scale. TimeXplore allows one to query and navigate large volumes of time series and their aggregates in near real time, with a simple yet powerful interface. The visualization synchronized across modalities can provide still further capability for us to develop and verify our hypothesis in multimodal data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berry, L., Munzner, T.: Binx: dynamic exploration of time series datasets across aggregation levels. In: IEEE Symposium on Information Visualization, pp. p2–p2. IEEE (2004)

    Google Scholar 

  2. Buono, P., Aris, A., Plaisant, C., Khella, A., Shneiderman, B.: Interactive pattern search in time series. Vis. Data Anal. 2005(5669), 175–186 (2005)

    Google Scholar 

  3. Casilari, E., Santoyo-RamĂ³n, J.A., Cano-GarcĂ­a, J.M.: UMAFall: a multisensor dataset for the research on automatic fall detection. Procedia Comput. Sci. 110, 32–39 (2017)

    Article  Google Scholar 

  4. Cuenca, E., Sallaberry, A., Wang, F.Y., Poncelet, P.: Multistream: a multiresolution streamgraph approach to explore hierarchical time series. IEEE Trans. Visual Comput. Graph. 24(12), 3160–3173 (2018)

    Article  Google Scholar 

  5. Dachselt, R., Frisch, M., Weiland, M.: FacetZoom: a continuous multi-scale widget for navigating hierarchical metadata. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1353–1356 (2008)

    Google Scholar 

  6. Faiola, A., Newlon, C.: Advancing critical care in the ICU: a human-centered biomedical data visualization systems. In: Robertson, M.M. (ed.) EHAWC 2011. LNCS, vol. 6779, pp. 119–128. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21716-6_13

    Chapter  Google Scholar 

  7. Gschwandtner, T., Aigner, W., Kaiser, K., Miksch, S., Seyfang, A.: CareCruiser: exploring and visualizing plans, events, and effects interactively. In: 2011 IEEE Pacific Visualization Symposium, pp. 43–50. IEEE (2011)

    Google Scholar 

  8. Havre, S., Hetzler, E., Whitney, P., Nowell, L.: Themeriver: visualizing thematic changes in large document collections. IEEE Trans. Visual Comput. Graph. 8(1), 9–20 (2002). https://doi.org/10.1109/2945.981848

    Article  Google Scholar 

  9. Hochheiser, H., Shneiderman, B.: Interactive exploration of time series data. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 441–446. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45650-3_38

    Chapter  Google Scholar 

  10. Hochheiser, H., Shneiderman, B.: Dynamic query tools for time series data sets: timebox widgets for interactive exploration. Inf. Vis. 3(1), 1–18 (2004)

    Article  Google Scholar 

  11. Hunter, J.D.: Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9(03), 90–95 (2007)

    Article  Google Scholar 

  12. Huynh, Q.T., Nguyen, U.D., Irazabal, L.B., Ghassemian, N., Tran, B.Q.: Optimization of an accelerometer and gyroscope-based fall detection algorithm. J. Sens. 2015 (2015)

    Google Scholar 

  13. Imrich, P., Mueller, K., Imre, D., Zelenyuk, A., Zhu, W.: Interactive poster: 3d themeriver. In: IEEE Information Visualization Symposium, vol. 3. IEEE Computer Society Press Los Alamitos (2003)

    Google Scholar 

  14. Kumar, P., Kumar, P., Zaidi, N., Rathore, V.S.: Analysis and comparative exploration of elastic search, MongoDB and Hadoop big data processing. In: Pant, M., Ray, K., Sharma, T.K., Rawat, S., Bandyopadhyay, A. (eds.) Soft Computing: Theories and Applications. AISC, vol. 584, pp. 605–615. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5699-4_57

    Chapter  Google Scholar 

  15. Moritz, D., Fisher, D.: Visualizing a million time series with the density line chart. arXiv preprint arXiv:1808.06019 (2018)

  16. Rind, A., et al.: Visual exploration of time-oriented patient data for chronic diseases: design study and evaluation. In: Holzinger, A., Simonic, K.-M. (eds.) USAB 2011. LNCS, vol. 7058, pp. 301–320. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25364-5_22

    Chapter  Google Scholar 

  17. Robertson, G., Fernandez, R., Fisher, D., Lee, B., Stasko, J.: Effectiveness of animation in trend visualization. IEEE Trans. Visual Comput. Graph. 14(6), 1325–1332 (2008)

    Article  Google Scholar 

  18. Santoyo-RamĂ³n, J.A., Casilari, E., Cano-GarcĂ­a, J.M.: Analysis of a smartphone-based architecture with multiple mobility sensors for fall detection with supervised learning. Sensors 18(4), 1155 (2018)

    Article  Google Scholar 

  19. Shah, N., Willick, D., Mago, V.: A framework for social media data analytics using Elasticsearch and Kibana. Wireless Netw., 1–9 (2018)

    Google Scholar 

  20. Song, D., Xia, N., Cheng, W., Chen, H., Tao, D.: Deep r-th root of rank supervised joint binary embedding for multivariate time series retrieval. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2229–2238 (2018)

    Google Scholar 

  21. Steed, C.A., Halsey, W., Dehoff, R., Yoder, S.L., Paquit, V., Powers, S.: Falcon: visual analysis of large, irregularly sampled, and multivariate time series data in additive manufacturing. Comput. Graph. 63, 50–64 (2017)

    Article  Google Scholar 

  22. Weng, Y., Liu, L.: A collective anomaly detection approach for multidimensional streams in mobile service security. IEEE Access 7, 49157–49168 (2019)

    Article  Google Scholar 

  23. Zhao, J., Chevalier, F., Pietriga, E., Balakrishnan, R.: Exploratory analysis of time-series with chronolenses. IEEE Trans. Visual Comput. Graph. 17(12), 2422–2431 (2011)

    Article  Google Scholar 

  24. Zhao, Y., Wang, Y., Zhang, J., Fu, C.W., Xu, M., Moritz, D.: KD-Box: Line-segment-based KD-tree for interactive exploration of large-scale time-series data. IEEE Trans. Visual Comput. Graph. 28(1), 890–900 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Science Foundation grant IIS-1651581 and DUE-1726532.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, J., Ni, A., Zhang, J., Zhu, H., Zhang, H. (2023). Visualizing Multimodal Time Series at Scale. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2023. Lecture Notes in Computer Science, vol 14361. Springer, Cham. https://doi.org/10.1007/978-3-031-47969-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47969-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47968-7

  • Online ISBN: 978-3-031-47969-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics