Skip to main content

Solar Flare Forecasting Using Individual and Ensemble RNN Models

  • Conference paper
  • First Online:
Artificial Intelligence XL (SGAI 2023)

Abstract

Solar flares release radioactive energy rapidly and have lethal effects on Space and Earth. Forecasting solar flares remains a challenging task as their occurrence is stochastic and multi-variable dependent. In this study, Recurrent Neural Network (RNN) models, namely Long Short Term Memory (LSTM), Gated Recurrent Units (GRU), and Simple Recurrent Neural Network (Simple RNN); and their Homogeneous and Heterogenous ensembles are compared for solar flare forecasting. This study adopts a dataset from the Space-weather Helioseismic and Magnetic Imager (HMI) Active Region Patches, in correspondence with Geostationary Operational Environmental Satellite (GOES) X-ray flare data catalogs, which are made available by National Centers for Environmental Information (NCEI). Solar flares emit X-rays when they occur. The focus of this study is on solar flares that are associated with an X-ray peak flux of at least \( 10^ {-6}\) Watts per square meter (\(W/m^{2}\)). The forecast period is 24 h prior to solar flare occurrence. Despite very comparable results from models, the Simple RNN surpassed the performance of other models. The LSTM model’s performance was most closely comparable to that of the Simple RNN. Comparison based on the True Skill Statistic (TSS), precision, and balanced accuracy (BACC), shows that this study produced better results than related studies that used LSTM models. This study improves the TSS by a margin of \(9\% \pm 0.009\) when compared to the benchmark study.

Supported by the University Of KwaZulu-Natal, National Research Foundation and Barclays Endowment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aktukmak, M., et al.: Incorporating polar field data for improved solar flare prediction. arXiv preprint arXiv:2212.01730 (2022)

  2. Bobra, M.G., et al.: Science platforms for heliophysics data analysis. arXiv preprint arXiv:2301.00878 (2023)

  3. Bobra, M.G., Couvidat, S.: Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798(2), 135 (2015)

    Article  Google Scholar 

  4. Britz, D., Goldie, A., Luong, M.T., Le, Q.: Massive exploration of neural machine translation architectures. arXiv preprint arXiv:1703.03906 (2017)

  5. Campi, C., Benvenuto, F., Massone, A.M., Bloomfield, D.S., Georgoulis, M.K., Piana, M.: Feature ranking of active region source properties in solar flare forecasting and the uncompromised stochasticity of flare occurrence. Astrophys. J. 883(2), 150 (2019)

    Article  Google Scholar 

  6. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  7. Florios, K., et al.: Forecasting solar flares using magnetogram-based predictors and machine learning. Sol. Phys. 293(2), 28 (2018). https://doi.org/10.1007/s11207-018-1250-4

    Article  Google Scholar 

  8. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

    Article  Google Scholar 

  9. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  10. Haykin, S., Chen, Z., Becker, S.: Stochastic correlative learning algorithms. IEEE Trans. Sig. Process. 52(8), 2200–2209 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Kaneda, K., Wada, Y., Iida, T., Nishizuka, N., Kubo, Y., Sugiura, K.: Flare transformer: solar flare prediction using magnetograms and sunspot physical features. In: Proceedings of the Asian Conference on Computer Vision, pp. 1488–1503 (2022)

    Google Scholar 

  13. Kazachenko, M.D., Lynch, B.J., Savcheva, A., Sun, X., Welsch, B.T.: Toward improved understanding of magnetic fields participating in solar flares: statistical analysis of magnetic fields within flare ribbons. Astrophys. J. 926(1), 56 (2022)

    Article  Google Scholar 

  14. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181 (2003). https://doi.org/10.1023/A:1022859003006

    Article  MATH  Google Scholar 

  15. Lemen, J.R., et al.: The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 17–40 (2012). https://doi.org/10.1007/s11207-011-9776-8

    Article  Google Scholar 

  16. Li, S., Li, W., Cook, C., Zhu, C., Gao, Y.: Independently recurrent neural network (IndRNN): building a longer and deeper RNN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5457–5466 (2018)

    Google Scholar 

  17. Liu, H., Liu, C., Wang, J.T., Wang, H.: Predicting solar flares using a long short-term memory network. Astrophys. J. 877(2), 121 (2019)

    Article  Google Scholar 

  18. Marzban, C.: The ROC curve and the area under it as performance measures. Weather Forecast. 19(6), 1106–1114 (2004)

    Article  Google Scholar 

  19. Nishizuka, N., Sugiura, K., Kubo, Y., Den, M., Ishii, M.: Deep flare net (DeFN) model for solar flare prediction. Astrophys. J. 858(2), 113 (2018)

    Article  Google Scholar 

  20. Niu, Z., Zhong, G., Yu, H.: A review on the attention mechanism of deep learning. Neurocomputing 452, 48–62 (2021)

    Article  Google Scholar 

  21. Pesnell, W.D., Thompson, B.J., Chamberlin, P.: The solar dynamics observatory (SDO). In: Chamberlin, P., Pesnell, W.D., Thompson, B. (eds.) The Solar Dynamics Observatory, pp. 3–15. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-3673-7_2

    Chapter  Google Scholar 

  22. Platts, J., Reale, M., Marsh, J., Urban, C.: Solar flare prediction with recurrent neural networks. J. Astronaut. Sci. 69(5), 1421–1440 (2022). https://doi.org/10.1007/s40295-022-00340-0

    Article  Google Scholar 

  23. Qahwaji, R., Colak, T.: Automatic short-term solar flare prediction using machine learning and sunspot associations. Sol. Phys. 241, 195–211 (2007). https://doi.org/10.1007/s11207-006-0272-5

    Article  Google Scholar 

  24. Raboonik, A., Safari, H., Alipour, N., Wheatland, M.S.: Prediction of solar flares using unique signatures of magnetic field images. Astrophys. J. 834(1), 11 (2016)

    Article  Google Scholar 

  25. Ribeiro, F., Gradvohl, A.L.S.: Machine learning techniques applied to solar flares forecasting. Astron. Comput. 35, 100468 (2021)

    Article  Google Scholar 

  26. Sagi, O., Rokach, L.: Ensemble learning: a survey. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 8(4), e1249 (2018)

    Article  Google Scholar 

  27. Sun, Z., et al.: Predicting solar flares using CNN and LSTM on two solar cycles of active region data. Astrophys. J. 931(2), 163 (2022)

    Article  Google Scholar 

  28. Wang, X., et al.: Predicting solar flares with machine learning: investigating solar cycle dependence. Astrophys. J. 895(1), 3 (2020)

    Article  Google Scholar 

  29. Weiss, G., Goldberg, Y., Yahav, E.: On the practical computational power of finite precision RNNs for language recognition. arXiv preprint arXiv:1805.04908 (2018)

  30. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yuan, Y., Shih, F.Y., Jing, J., Wang, H.M.: Automated flare forecasting using a statistical learning technique. Res. Astron. Astrophys. 10(8), 785 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandlenkosi Gwetu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mngomezulu, M., Gwetu, M., Fonou-Dombeu, J.V. (2023). Solar Flare Forecasting Using Individual and Ensemble RNN Models. In: Bramer, M., Stahl, F. (eds) Artificial Intelligence XL. SGAI 2023. Lecture Notes in Computer Science(), vol 14381. Springer, Cham. https://doi.org/10.1007/978-3-031-47994-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47994-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47993-9

  • Online ISBN: 978-3-031-47994-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics