Skip to main content

Interpreting NMR Spectra by Constraint Solving

  • Conference paper
  • First Online:
Artificial Intelligence XL (SGAI 2023)

Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is a widely used analytical technique for identifying the molecular structure of complex organic compounds. However, NMR data interpretation can be complex and challenging to decipher. This paper presents a practical approach utilising a generic constraint satisfaction (CS) to interpret NMR spectra and determine molecular structures. It is based on the translation of NMR signals into the sets of constraints on molecular structure. When solved by a constraint solver, these constraints generate a set of all possible molecular structures consistent with the observed NMR spectra data. Based on our previous work accompanied by a prototype implementation, we report here further developments and improvements. These include more precise modelling of NMR constraints and new implementation using the constraint modelling language MiniZinc. We enhance the user experience by adding more functionalities to the system and providing a graphical user interface. Spectroscopists can select from a list of complementary constraints obtained/known outside the scope of NMR. We integrate the PubChem database to find matches for molecular structures. In addition, we use the Cheminfo website’s prediction services to provide users with convenient and on-demand access to NMR predictions. To evaluate the effectiveness of our approach, we conducted extensive experiments on diverse NMR spectra from a range of 20 problems. By applying all the constraints, we were found to provide accurate and efficient solutions in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Detailed introduction to all relevant chemical concepts is out of the scope of this paper. An interested reader with a Computer Science background may find an appropriate introduction in [6].

References

  1. Alharbi, H.A., Barsukov, I., Grosman, R., Lisitsa, A.: Molecular fragments from incomplete, real-life NMR data: framework for spectra analysis with constraint solvers. In: Proceedings of the 14th International Conference on Agents and Artificial Intelligence - Volume 3: ICAART, pp. 834–841. INSTICC, SciTePress (2022). https://doi.org/10.5220/0010915800003116

  2. Burns, D.C., Mazzola, E.P., Reynolds, W.F.: The role of computer-assisted structure elucidation (case) programs in the structure elucidation of complex natural products. Nat. Prod. Rep. 36(6), 919–933 (2019)

    Article  Google Scholar 

  3. Carissan, Y., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., Varet, A.: Using constraint programming to generate benzenoid structures in theoretical chemistry. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 690–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7_40

    Chapter  MATH  Google Scholar 

  4. Cheminfo website. http://www.cheminfo.org/. Accessed 22 Jan 2023

  5. Elyashberg, M., Williams, A.: ACD/structure elucidator: 20 years in the history of development. Molecules 26(21), 6623 (2021)

    Article  Google Scholar 

  6. Elyashberg, M.E., Williams, A.J.: Computer-Based Structure Elucidation from Spectral Data. LNC, vol. 89. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46402-1

    Book  Google Scholar 

  7. Elyashberg, M.E., Blinov, K.A., Williams, A.J., Martirosian, E.R., Molodtsov, S.G.: Application of a new expert system for the structure elucidation of natural products from their 1D and 2D NMR data. J. Nat. Prod. 65(5), 693–703 (2002)

    Article  Google Scholar 

  8. Gugisch, R., et al.: MOLGEN 5.0, a molecular structure generator. In: Advances in Mathematical Chemistry and Applications, pp. 113–138. Elsevier (2015)

    Google Scholar 

  9. Kessler, P., Godejohann, M.: Identification of tentative marker in Corvina and Primitivo wines with CMC-se. Magn. Reson. Chem. 56(6), 480–492 (2018)

    Article  Google Scholar 

  10. Kim, S., et al.: PubChem substance and compound databases. Nucleic Acids Res. 44(D1), D1202–D1213 (2016)

    Article  Google Scholar 

  11. Kind, T., Fiehn, O.: Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinf. 7(1), 1–10 (2006)

    Article  Google Scholar 

  12. Koichi, S., et al.: Chemical structure elucidation from 13C NMR chemical shifts: Efficient data processing using bipartite matching and maximal clique algorithms. J. Chem. Inf. Model. 54(4), 1027–1035 (2014)

    Article  Google Scholar 

  13. Landrum, G.: RDKit: open-source cheminformatics software. GitHub SourceForge 10, 3592822 (2016)

    Google Scholar 

  14. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mnova structure elucidation. http://mestrelab.com/software/mnova/. Accessed 21 Feb 2023

  16. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38

    Chapter  Google Scholar 

  17. Omrani, M.A., Naanaa, W.: A constrained molecular graph generation with imposed and forbidden fragments. In: Proceedings of the 9th Hellenic Conference on Artificial Intelligence, pp. 1–5 (2016)

    Google Scholar 

  18. Omrani, M.A., Naanaa, W.: Constraints for generating graphs with imposed and forbidden patterns: an application to molecular graphs. Constraints 25, 1–22 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Patiny, L., Bolaños, A., Castillo, A.M., Bernal, A., Wist, J.: Teaching NMR spectra analysis with NMR. cheminfo.org. Magn. Reson. Chem. 56(6), 529–534 (2018)

    Google Scholar 

  20. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and programming with GECODE. In: Schulte, Christian and Tack, Guido and Lagerkvist, Mikael, vol. 1 (2010)

    Google Scholar 

  21. Smith, D.H., Gray, N.A., Nourse, J.G., Crandell, C.W.: The DENDRAL project: recent advances in computer-assisted structure elucidation. Anal. Chim. Acta 133(4), 471–497 (1981)

    Article  Google Scholar 

  22. Ulrich, E.L., et al.: BioMagResBank. Nucleic Acids Res. 36(suppl_1), D402–D408 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haneen A. Alharbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alharbi, H.A., Barsukov, I., Grosman, R., Lisitsa, A. (2023). Interpreting NMR Spectra by Constraint Solving. In: Bramer, M., Stahl, F. (eds) Artificial Intelligence XL. SGAI 2023. Lecture Notes in Computer Science(), vol 14381. Springer, Cham. https://doi.org/10.1007/978-3-031-47994-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47994-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47993-9

  • Online ISBN: 978-3-031-47994-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics