Skip to main content

Deep Despeckling of SAR Images to Improve Change Detection Performance

  • Conference paper
  • First Online:
Artificial Intelligence XL (SGAI 2023)

Abstract

Synthetic aperture radar (SAR) image change detection (CD) focuses on identifying the change between two images at different times for the same geographical region. SAR offers advantages over optical sensors for disaster-related change detection in remote sensing due to its all-weather capability and ability to penetrate clouds and darkness. The performance of change detection methods is affected by several challenges. Deep learning methods, such as convolutional neural networks (CNNs), have shown promising performance in dealing with these challenges. However, CNN methods still suffer from speckle noise, adversely impacting the change detection performance F1 score. To tackle this challenge, we propose a CNN model that despeckles the noise prior to applying change detection methods. We extensively evaluate the performance of our method on three SAR datasets, and the results of our proposed method demonstrate superior performance compared to state-of-the-art methods such as DDNet and LANTNet performance. Our method significantly increased the change detection accuracy from a baseline of 86.65% up to 90.79% for DDNet and from 87.16% to 91.1% for LANTNet in the Yellow River dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2010)

    Article  Google Scholar 

  2. Bai, X., Zhou, F.: Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recogn. 43(6), 2145–2156 (2010)

    Article  MATH  Google Scholar 

  3. Celik, T.: Unsupervised change detection in satellite images using principal component analysis and \(k\)-means clustering. IEEE Geosci. Remote Sens. Lett. 6(4), 772–776 (2009)

    Article  Google Scholar 

  4. Chierchia, G., Cozzolino, D., Poggi, G., Verdoliva, L.: SAR image despeckling through convolutional neural networks. In: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5438–5441. IEEE (2017)

    Google Scholar 

  5. Dekker, R.: Speckle filtering in satellite SAR change detection imagery. Int. J. Remote Sens. 19(6), 1133–1146 (1998)

    Article  Google Scholar 

  6. Fan, R., Hou, B., Liu, J., Yang, J., Hong, Z.: Registration of multiresolution remote sensing images based on L2-Siamese model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 237–248 (2020)

    Article  Google Scholar 

  7. Foody, G.M.: Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 239, 111630 (2020)

    Article  Google Scholar 

  8. Gao, F., Dong, J., Li, B., Xu, Q.: Automatic change detection in synthetic aperture radar images based on PCANet. IEEE Geosci. Remote Sens. Lett. 13(12), 1792–1796 (2016). https://doi.org/10.1109/LGRS.2016.2611001

    Article  Google Scholar 

  9. Gao, F., Dong, J., Li, B., Xu, Q., Xie, C.: Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine. J. Appl. Remote Sens. 10(4), 046019 (2016)

    Article  Google Scholar 

  10. Gao, Y., Gao, F., Dong, J., Du, Q., Li, H.C.: Synthetic aperture radar image change detection via Siamese adaptive fusion network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14, 10748–10760 (2021)

    Article  Google Scholar 

  11. Gao, Y., Gao, F., Dong, J., Li, H.C.: Sar image change detection based on multiscale capsule network. IEEE Geosci. Remote Sens. Lett. 18(3), 484–488 (2020)

    Article  Google Scholar 

  12. Gong, M., Zhou, Z., Ma, J.: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 21(4), 2141–2151 (2012). https://doi.org/10.1109/TIP.2011.2170702

    Article  MathSciNet  MATH  Google Scholar 

  13. Ihmeida, M., Shahzad, M.: Enhanced change detection performance based on deep despeckling of synthetic aperture radar images. IEEE Access (2023)

    Google Scholar 

  14. Ihmeida, M., Wei, H.: Image registration techniques and applications: comparative study on remote sensing imagery. In: 2021 14th International Conference on Developments in eSystems Engineering (DeSE), pp. 142–148. IEEE (2021)

    Google Scholar 

  15. Intajag, S., Chitwong, S.: Speckle noise estimation with generalized gamma distribution. In: 2006 SICE-ICASE International Joint Conference, pp. 1164–1167. IEEE (2006)

    Google Scholar 

  16. Khelifi, L., Mignotte, M.: Deep learning for change detection in remote sensing images: comprehensive review and meta-analysis. IEEE Access 8, 126385–126400 (2020)

    Article  Google Scholar 

  17. Krinidis, S., Chatzis, V.: A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, H.C., Hong, W., Wu, Y.R., Fan, P.Z.: Bayesian wavelet shrinkage with heterogeneity-adaptive threshold for SAR image despeckling based on generalized gamma distribution. IEEE Trans. Geosci. Remote Sens. 51(4), 2388–2402 (2012)

    Article  Google Scholar 

  19. Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A.: Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote. Sens. 152, 166–177 (2019)

    Article  Google Scholar 

  20. Meng, D., Gao, F., Dong, J., Du, Q., Li, H.C.: Synthetic aperture radar image change detection via layer attention-based noise-tolerant network. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Google Scholar 

  21. Moulton, J., Kassam, S., Ahmad, F., Amin, M., Yemelyanov, K.: Target and change detection in synthetic aperture radar sensing of urban structures. In: 2008 IEEE Radar Conference, pp. 1–6. IEEE (2008)

    Google Scholar 

  22. Qu, X., Gao, F., Dong, J., Du, Q., Li, H.C.: Change detection in synthetic aperture radar images using a dual-domain network. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

  23. Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Trans. Image Process. 14(3), 294–307 (2005)

    Article  MathSciNet  Google Scholar 

  24. Tang, X., et al.: An unsupervised remote sensing change detection method based on multiscale graph convolutional network and metric learning. IEEE Trans. Geosci. Remote Sens. 60, 1–15 (2021)

    Google Scholar 

  25. Ulaby, F., Dobson, M.C., Álvarez-Pérez, J.L.: Handbook of Radar Scattering Statistics for Terrain. Artech House (2019)

    Google Scholar 

  26. Wang, J., Gao, F., Dong, J., Zhang, S., Du, Q.: Change detection from synthetic aperture radar images via graph-based knowledge supplement network. arXiv preprint arXiv:2201.08954 (2022)

  27. Wang, P., Zhang, H., Patel, V.M.: Sar image despeckling using a convolutional neural network. IEEE Signal Process. Lett. 24(12), 1763–1767 (2017)

    Article  Google Scholar 

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, W., Jiao, L., Liu, F., Yang, S., Liu, J.: Adaptive contourlet fusion clustering for SAR image change detection. IEEE Trans. Image Process. 31, 2295–2308 (2022). https://doi.org/10.1109/TIP.2022.3154922

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Ihmeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ihmeida, M., Shahzad, M. (2023). Deep Despeckling of SAR Images to Improve Change Detection Performance. In: Bramer, M., Stahl, F. (eds) Artificial Intelligence XL. SGAI 2023. Lecture Notes in Computer Science(), vol 14381. Springer, Cham. https://doi.org/10.1007/978-3-031-47994-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47994-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47993-9

  • Online ISBN: 978-3-031-47994-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics