Skip to main content

IoT-Based User Interface for Remote Control of a Mobile Robot

  • Conference paper
  • First Online:
HCI International 2023 – Late Breaking Papers (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14057))

Included in the following conference series:

  • 739 Accesses

Abstract

Recent advancements in mobile robot research have resulted in the development of precise robot control tools, while information technology research has focused on the Internet of Things (IoT) in the context of the fourth industrial revolution. This study evaluates a user interface designed for remote control of the Crowbot BOLT robot. This robot utilizes the ESP32 board and is controlled through the M5Stack Core2 kit with a touch screen. The user interface offers two modes of operation: touch-based buttons for movement control and gyroscope control based on the M5Stack’s angular position. Communication between the robot and the user interface is established using the MQTT protocol through the ThingSpeak server, allowing control from any location with a line of sight and internet connectivity. Operation data is collected by recording control orders and measuring sending times, while user acceptance is evaluated using an IoT-based technology acceptance model. The results indicate the need for remote control response time improvement and reveal low scores in perceived usefulness and influence social. In conclusion, the study demonstrates the feasibility of remote control of a mobile robot using the MQTT protocol, providing valuable insights for similar applications and considering user recommendations for future enhancements and system expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rubio, F., Valero, F., Llopis-Albert, C.: A review of mobile robots: concepts, methods, theoretical framework, and applications. Int. J. Adv. Robot. Syst. 16, 172988141983959 (2019). https://doi.org/10.1177/1729881419839596

    Article  Google Scholar 

  2. Herrera, D., Roberti, F., Carelli, R., Andaluz, V., Varela, J., Ortiz, J.: Modeling and path-following control of a wheelchair in human-shared environments. Int. J. Humanoid Rob. 15, 1–33 (2018). https://doi.org/10.1142/S021984361850010X

    Article  Google Scholar 

  3. Ortiz, J.S., Molina, M.F., Andaluz, V.H., Varela, J., Morales, V.: Coordinated control of a omnidirectional double mobile manipulator. In: Kim, K.J., Kim, H., Baek, N. (eds.) ICITS 2017. LNEE, vol. 449, pp. 278–286. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6451-7_33

    Chapter  Google Scholar 

  4. Silva Ortigoza, R., et al.: Wheeled mobile robots: a review. IEEE Lat. Am. Trans. 10, 2209–2217 (2012). https://doi.org/10.1109/TLA.2012.6418124

    Article  Google Scholar 

  5. Varela-Aldás, J., Buele, J., Guerrero-Núñez, S., Andaluz, V.H.: Mobile manipulator for hospital care using firebase presented at the (2022). https://doi.org/10.1007/978-3-031-17618-0_24

  6. Wang, X.V., Wang, L.: A literature survey of the robotic technologies during the COVID-19 pandemic. J. Manuf. Syst. 60, 823–836 (2021). https://doi.org/10.1016/j.jmsy.2021.02.005

    Article  Google Scholar 

  7. Tompa, V., Hurgoiu, D., Neamtu, C., Popescu, D.: Remote control and monitoring of an autonomous mobile robot. In: Proceedings of 2012 IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 438–442. IEEE (2012). https://doi.org/10.1109/AQTR.2012.6237750

  8. Rawat, A.: Recent trends in IoT: a review. J. Manage. Serv. Sci. (JMSS) 2(2), 1–12 (2022). https://doi.org/10.54060/jmss.v2i2.21

    Article  Google Scholar 

  9. Salazar, M., Castillo, F., Andaluz, V.H., Palacios-Navarro, G., Varela-Aldás, J.: Monitoring system for plants based on a smart plant pot presented at the (2022). https://doi.org/10.1007/978-3-031-06388-6_47

  10. Madakam, S., Ramaswamy, R., Tripathi, S.: Internet of Things (IoT): a literature review. J. Comput. Commun. 03, 164–173 (2015). https://doi.org/10.4236/jcc.2015.35021

    Article  Google Scholar 

  11. Al-Emran, M., Malik, S.I., Al-Kabi, M.N.: A survey of Internet of Things (IoT) in education: opportunities and challenges. In: Hassanien, A.E., Bhatnagar, R., Khalifa, N.E.M., Taha, M.H.N. (eds.) Toward social internet of things (SIoT): Enabling technologies, architectures and applications. SCI, vol. 846, pp. 197–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-24513-9_12

    Chapter  Google Scholar 

  12. Tzafestas, S.G.: Synergy of IoT and AI in modern society: the robotics and automation case. Robot. Autom. Eng. J. 3, 5555621 (2018). https://doi.org/10.19080/RAEJ.2018.03.555621

  13. Qadri, I., Muneer, A., Fati, S.M.: Automatic robotic scanning and inspection mechanism for mines using IoT. IOP Conf. Ser. Mater. Sci. Eng. 1045, 012001 (2021). https://doi.org/10.1088/1757-899X/1045/1/012001

    Article  Google Scholar 

  14. Grieco, L.A., et al.: IoT-aided robotics applications: technological implications, target domains and open issues. Comput. Commun. 54, 32–47 (2014). https://doi.org/10.1016/j.comcom.2014.07.013

    Article  Google Scholar 

  15. Krishnan, A., Swarna, S., Balasubramanya, H.S.: Robotics, IoT, and AI in the automation of agricultural industry: a review. In: 2020 IEEE Bangalore Humanitarian Technology Conference (B-HTC), pp. 1–6. IEEE (2020). https://doi.org/10.1109/B-HTC50970.2020.9297856

  16. M5Stack: M5Core2. https://docs.m5stack.com/en/core/core2

  17. Gao, L., Bai, X.: A unified perspective on the factors influencing consumer acceptance of internet of things technology. Asia Pacific J. Mark. Logist. 26, 211–231 (2014). https://doi.org/10.1108/APJML-06-2013-0061

    Article  Google Scholar 

  18. Adi, P.D.P., Kitagawa, A., Akita, J.: Finger robotic control use M5Stack board and MQTT protocol based. In: 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pp. 1–6. IEEE (2020). https://doi.org/10.1109/ICITACEE50144.2020.9239170

  19. Adi, P.D.P., Kitagawa, A.: A Review of the blockly programming on M5Stack board and MQTT based for programming education. In: 2019 IEEE 11th International Conference on Engineering Education (ICEED), pp. 102–107. IEEE (2019). https://doi.org/10.1109/ICEED47294.2019.8994922

  20. Nemlaha, E., Střelec, P., Horák, T., Kováč, S., Tanuška, P.: Suitability of MQTT and REST communication protocols for AIoT or IIoT devices based on ESP32 S3 presented at the (2023).https://doi.org/10.1007/978-3-031-21435-6_19

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Varela-Aldás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varela-Aldás, J., Palacios-Navarro, G. (2023). IoT-Based User Interface for Remote Control of a Mobile Robot. In: Duffy, V.G., Krömker, H., A. Streitz, N., Konomi, S. (eds) HCI International 2023 – Late Breaking Papers. HCII 2023. Lecture Notes in Computer Science, vol 14057. Springer, Cham. https://doi.org/10.1007/978-3-031-48047-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48047-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48046-1

  • Online ISBN: 978-3-031-48047-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics