Skip to main content

Underlying Factors of Technology Acceptance and User Experience of Machine Learning Functions in Accounting Software: A Qualitative Content Analysis

  • Conference paper
  • First Online:
HCI International 2023 – Late Breaking Papers (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14060))

Included in the following conference series:

  • 1182 Accesses

Abstract

This research examines which factors influence users’ technology acceptance (TA) and user experience (UX) of machine learning (ML) functions in accounting software. Although the two methods are widely acknowledged, they are rarely understood in unity. This study analyses factors underlying UX and TA of ML function in accounting software. It contributes to the ongoing discussion in the Human-Computer Interaction (HCI) community about the relation between UX and TAM, and it does so with a focus on AI functions of software and within a business domain. Six hypotheses were established based on the three concepts of innovativeness, trust, and satisfaction to understand their influence on TA and UX. To evaluate the hypotheses and answer the research question, an accounting software (AS) was chosen as a case. A qualitative content analysis was done of user experts’ perceptions of acceptance and experience with ML functions. The study concludes that innovativeness, trust, and satisfaction influence users’ TA and UX of ML functions in AS confirming the six hypotheses. The results are discussed in relation to the literature on UX, TAM, and accounting. The study questions the measurability of TAM and UX and suggests re-evaluating the use of these methods for products with artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hornbæk, K., Hertzum, M.: Technology acceptance and user experience. ACM Trans. Comput. Human Interact. 24, 1–30 (2017). https://doi.org/10.1145/3127358

    Article  Google Scholar 

  2. Hassenzahl, M., Burmester, M., Koller, F.: AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Szwillus, G. and Ziegler, J. (eds.) Mensch & Computer 2003: Interaktion in Bewegung. pp. 187–196. Vieweg+Teubner Verlag, Wiesbaden (2003). https://doi.org/10.1007/978-3-322-80058-9_19

  3. Law, E.L.-C., Roto, V., Hassenzahl, M., Vermeeren, A.P.O.S., Kort, J.: Understanding, scoping and defining user experience: a survey approach. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 719–728. ACM (2009). https://doi.org/10.1145/1518701.1518813

  4. van Schaik, P., Ling, J.: Modelling user experience with web sites: usability, hedonic value, beauty and goodness. Interact. Comput. 20, 419–432 (2008). https://doi.org/10.1016/j.intcom.2008.03.001

    Article  Google Scholar 

  5. Merčun, T., Žumer, M.: Exploring the influences on pragmatic and hedonic aspects of user experience (2017)

    Google Scholar 

  6. Davis, F.D.: A technology acceptance model for empirically testing new end-user information systems: theory and results. Doctoral Dissertation, Sloan School of Management, Massachusetts Institute of Technology. (1986)

    Google Scholar 

  7. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 27, 425–478 (2003). https://doi.org/10.2307/30036540

    Article  Google Scholar 

  8. Carmona, K., Finley, E., Li, M.: The relationship between user experience and machine learning. SSRN Electron. J. (2018). https://doi.org/10.2139/ssrn.3173932

    Article  Google Scholar 

  9. Dove, G., Halskov, K., Forlizzi, J., Zimmerman, J.: UX design innovation. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 278–288. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3025453.3025739

  10. Yang, Q., Steinfeld, A., Rosé, C., Zimmerman, J.: Re-examining Whether, why, and how human-AI interaction is uniquely difficult to design. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–13. ACM, New York, NY, USA (2020). https://doi.org/10.1145/3313831.3376301

  11. Amershi, S., et al.: Guidelines for human-AI interaction. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–13. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3290605.3300233

  12. People +AI Research. https://pair.withgoogle.com. Accessed 27 Sep 2022

  13. Pu, P., Chen, L., Hu, R.: A user-centric evaluation framework for recommender systems. In: Proceedings of the fifth ACM Conference on Recommender Systems, pp. 157–164. ACM, New York, NY, USA (2011). https://doi.org/10.1145/2043932.2043962

  14. Kliman-Silver, C., Siy, O., Awadalla, K., Lentz, A., Convertino, G., Churchill, E.: Adapting user experience research methods for AI-driven experiences. In: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–8. ACM, New York, NY, USA (2020). https://doi.org/10.1145/3334480.3375231

  15. Guszcza, J.: Smarter Together: Why artificial intelligence needs human-centered design . (2018)

    Google Scholar 

  16. Nielsen, S.: Management accounting and the concepts of exploratory data analysis and unsupervised machine learning: a literature study and future directions. J. Account. Organ. Chang. 18, 811–853 (2022). https://doi.org/10.1108/JAOC-08-2020-0107

    Article  Google Scholar 

  17. How Did the Field of Accounting Evolve? https://www.investopedia.com/articles/08/accounting-history.asp. Accessed 11 Nov 2022

  18. van Schaik, P., Ling, J.: An integrated model of interaction experience for information retrieval in a Web-based encyclopaedia. Interact. Comput. 23, 18–32 (2011). https://doi.org/10.1016/j.intcom.2010.07.002

    Article  Google Scholar 

  19. Clemmensen, T., Hertzum, M., Abdelnour-Nocera, J.: Ordinary user experiences at work: a study of greenhouse growers. ACM Trans. Comput. Human Interact. 27(3), 1–31 (2020). https://doi.org/10.1145/3386089

    Article  Google Scholar 

  20. Damerji, H., Salimi, A.: Mediating effect of use perceptions on technology readiness and adoption of artificial intelligence in accounting. Acc. Educ. 30, 107–130 (2021). https://doi.org/10.1080/09639284.2021.1872035

    Article  Google Scholar 

  21. Gonçalves, M.J.A., da Silva, A.C.F., Ferreira, C.G.: The future of accounting: how will digital transformation impact the sector? Informatics. 9, 19 (2022). https://doi.org/10.3390/informatics9010019

    Article  Google Scholar 

  22. Kommunuri, J.: Artificial intelligence and the changing landscape of accounting: a viewpoint. Pac. Account. Rev. 34, 585–594 (2022). https://doi.org/10.1108/PAR-06-2021-0107

    Article  Google Scholar 

  23. Petkov, R.: Artificial intelligence (AI) and the accounting function—a revisit and a new perspective for developing framework. J. Emerging Technol. Account. 17, 99–105 (2020). https://doi.org/10.2308/jeta-52648

    Article  Google Scholar 

  24. Wang, T.: The impact of emerging technologies on accounting curriculum and the accounting profession. Pac. Account. Rev. 34, 526–535 (2022). https://doi.org/10.1108/PAR-05-2021-0074

    Article  Google Scholar 

  25. Eißer, J., Torrini, M., Böhm, S.: Automation anxiety as a barrier to workplace automation. In: Proceedings of the 2020 on Computers and People Research Conference, pp. 47–51. ACM, New York, NY, USA (2020). https://doi.org/10.1145/3378539.3393866

  26. Commerford, B.P., Dennis, S.A., Joe, J.R., Ulla, J.W.: Man versus machine: complex estimates and auditor reliance on artificial intelligence. J. Account. Res. 60, 171–201 (2022). https://doi.org/10.1111/1475-679X.12407

    Article  Google Scholar 

  27. Kumari, P.: How does interactivity impact user engagement over mobile bookkeeping applications? J. Glob. Inf. Manag. 30, 1–16 (2021). https://doi.org/10.4018/JGIM.301270

    Article  Google Scholar 

  28. Davis, F.D.: A technology acceptance model for empirically testing new end-user information systems: Theory and Results (1985)

    Google Scholar 

  29. Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manage. Sci. 46, 186–204 (2000). https://doi.org/10.1287/mnsc.46.2.186.11926

    Article  Google Scholar 

  30. Yousafzai, S.Y., Foxall, G.R., Pallister, J.G.: Technology acceptance: a meta-analysis of the TAM: part 2. J. Model. Manag. 2, 281–304 (2007). https://doi.org/10.1108/17465660710834462

    Article  Google Scholar 

  31. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 39, 273–315 (2008). https://doi.org/10.1111/j.1540-5915.2008.00192.x

    Article  Google Scholar 

  32. Göğüş, Ç.G., Özer, G.: The roles of technology acceptance model antecedents and switching cost on accounting software use. J. Manage. Inf. Decis. Sci. 17(1), 1 (2014)

    Google Scholar 

  33. Halilovic, S., Cicic, M.: Understanding determinants of information systems users’ behaviour: a comparison of two models in the context of integrated accounting and budgeting software. Behav. Inf. Technol. 32, 1280–1291 (2013). https://doi.org/10.1080/0144929X.2012.708784

    Article  Google Scholar 

  34. Bagozzi, R.: The legacy of the technology acceptance model and a proposal for a paradigm shift. J. Assoc. Inf. Syst. 8(4), 244–254 (2007). https://doi.org/10.17705/1jais.00122

    Article  Google Scholar 

  35. Chuttur, M.: Overview of the Technology Acceptance Model: Origins, Developments and Future Directions. All Sprouts Content, 290 (2009)

    Google Scholar 

  36. Lee, Y., Kozar, K.A., Larsen, K.R.T.: The technology acceptance model: past, present, and future. Commun. Assoc. Inf. Syst. 12, 1–12 (2003). https://doi.org/10.17705/1CAIS.01250

    Article  Google Scholar 

  37. Legris, P., Ingham, J., Collerette, P.: Why do people use information technology? A critical review of the technology acceptance model. Inf. Manage. 40, 191–204 (2003). https://doi.org/10.1016/S0378-7206(01)00143-4

    Article  Google Scholar 

  38. Lowe, B., Dwivedi, Y., D’Alessandro, S.P.: Guest editorial. Eur. J. Mark. 53, 1038–1050 (2019). https://doi.org/10.1108/EJM-06-2019-966

    Article  Google Scholar 

  39. Forlizzi, J., Battarbee, K.: Understanding experience in interactive systems. In: Proceedings of the 5th Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques. pp. 261–268. ACM, New York, NY, USA (2004). https://doi.org/10.1145/1013115.1013152

  40. Hassenzahl, M., Tractinsky, N.: User experience - a research agenda. Behav. Inf. Technol. 25, 91–97 (2006). https://doi.org/10.1080/01449290500330331

    Article  Google Scholar 

  41. Law, E.L.-C., Roto, V., Hassenzahl, M., Vermeeren, A.P.O.S., Kort, J.: Understanding, scoping and defining user experience. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 719–728. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1518701.1518813

  42. Hassenzahl, M.: The thing and I: understanding the relationship between user and product (2003).https://doi.org/10.1007/1-4020-2967-5_4

  43. Merčun, T., Žumer, M.: Exploring the influences on pragmatic and hedonic aspects of user experience (2017)

    Google Scholar 

  44. Mashapa, J., van Greunen, D.: User experience evaluation metrics for usable accounting tools. In: Proceedings of the 2010 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists, pp. 170–181. ACM, New York, NY, USA (2010). https://doi.org/10.1145/1899503.1899522

  45. Garcia, M.B., Claour, J.P.: Mobile bookkeeper: personal financial management application with receipt scanner using optical character recognition. In: 2021 1st Conference on Online Teaching for Mobile Education (OT4ME), pp. 15–20. IEEE (2021). https://doi.org/10.1109/OT4ME53559.2021.9638794

  46. Deng, L., Turner, D.E., Gehling, R., Prince, B.: User experience, satisfaction, and continual usage intention of IT. Eur. J. Inf. Syst. 19, 60–75 (2010). https://doi.org/10.1057/ejis.2009.50

    Article  Google Scholar 

  47. Frison, A.-K., et al.: In UX we trust. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. pp. 1–13. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3290605.3300374

  48. Parasuraman, R., Riley, V.: Humans and automation: use, misuse, disuse, abuse. Human Fact. J. Human Fact. Ergon. Soc. 39, 230–253 (1997). https://doi.org/10.1518/001872097778543886

    Article  Google Scholar 

  49. Google Design: AI and Design: Putting People First: A discussion on how designers can harness and humanize AI’s vast potential. https://design.google/library/ai-design-roundtable-discussion/. Accessed 15 Sep 2022

  50. Trinczek, R.: How to interview managers? Methodical and methodological aspects of expert interviews as a qualitative method in empirical social research. In: Bogner, A., Littig, B., Menz, W. (eds.) Interviewing Experts, pp. 203–216. Palgrave Macmillan UK, London (2009). https://doi.org/10.1057/9780230244276_10

    Chapter  Google Scholar 

  51. Doll, W.J., Torkzadeh, G.: The measurement of end-user computing satisfaction. MIS Q. 12, 259 (1988). https://doi.org/10.2307/248851

    Article  Google Scholar 

  52. Elnagar, A., Alnazzawi, N., Afyouni, I., Shahin, I., Nassif, A.B., Salloum, S.A.: Prediction of the intention to use a smartwatch: a comparative approach using machine learning and partial least squares structural equation modeling. Inform. Med. Unlocked. 29, 100913 (2022). https://doi.org/10.1016/j.imu.2022.100913

    Article  Google Scholar 

  53. Mashapa, J., van Greunen, D.: User experience evaluation metrics for usable accounting tools. In: Proceedings of the 2010 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists, pp. 170–181. ACM (2010). https://doi.org/10.1145/1899503.1899522

  54. Yi, M.Y., Fiedler, K.D., Park, J.S.: Understanding the role of individual innovativeness in the acceptance of IT-based innovations: comparative analyses of models and measures. Decis. Sci. 37, 393–426 (2006). https://doi.org/10.1111/j.1540-5414.2006.00132.x

    Article  Google Scholar 

  55. Jian, J.-Y., Bisantz, A.M., Drury, C.G.: Foundations for an empirically determined scale of trust in automated systems. Int. J. Cogn. Ergon. 4, 53–71 (2000). https://doi.org/10.1207/S15327566IJCE0401_04

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torkil Clemmensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cristofoli, C., Clemmensen, T. (2023). Underlying Factors of Technology Acceptance and User Experience of Machine Learning Functions in Accounting Software: A Qualitative Content Analysis. In: Zaphiris, P., et al. HCI International 2023 – Late Breaking Papers. HCII 2023. Lecture Notes in Computer Science, vol 14060. Springer, Cham. https://doi.org/10.1007/978-3-031-48060-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48060-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48059-1

  • Online ISBN: 978-3-031-48060-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics