Skip to main content

The Autonomous Platform Using the Markov Chain

  • Conference paper
  • First Online:
HCI International 2023 – Late Breaking Papers (HCII 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14060))

Included in the following conference series:

  • 1098 Accesses

Abstract

This work focuses on the use of the Markov chain to optimize the learning path for learner. We observe that most of them during their online courses can be are victims of boredom which pushes them to give up their courses and consequently do not obtain the certificate, of which they had the ambition to obtain the formation and the diploma. We based our works on Q-Learning methods that seem to meet our need to satisfy students’ demand for titles and certificates without getting bored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fraoua, K.E., Leblanc, J.-M., David, A.: Use of an emotional chatbot for the analysis of a discussion forum for the improvement of an E-learning platform. In: Zaphiris, P., Ioannou, A. (eds.) HCII 2020. LNCS, vol. 12206, pp. 25–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50506-6_3

    Chapter  Google Scholar 

  2. Picard, R.W.: Affective Computing. MIT press, Cambridge (2000)

    Book  Google Scholar 

  3. Elias, M.J., Zins, J.E., Weissberg, R.P.: Promoting social and emotional learning: guidelines for educators. In: ASCD (1997)

    Google Scholar 

  4. Dehaene, S.: How We Learn: The New Science of Education and the Brain. Penguin, UK (2020)

    Google Scholar 

  5. Qazi, A., Hardaker, G., Ahmad, I.S., Darwich, M., Maitama, J.Z., Dayani, A.: The role of information & communication technology in elearning environments: a systematic review. IEEE Access 9, 45539–45551 (2021)

    Article  Google Scholar 

  6. Wahlstedt, A., Pekkola, S., Niemelä, M.: From e-learning space to e-learning place. Br. J. Edu. Technol. 39(6), 1020–1030 (2008)

    Article  Google Scholar 

  7. Dumas, A., Lépine, V., Martin-Juchat, F.: Le tournant affectif dans les études en communication organisationnelle. Commun. Organ., 75–93 (2023)

    Google Scholar 

  8. Nwana, H.S.: Intelligent tutoring systems: an overview. Artif. Intell. Rev. 4(4), 251–277 (1990)

    Article  Google Scholar 

  9. Allen, W.C.: Overview and evolution of the ADDIE training system. Adv. Dev. Hum. Resour. 8(4), 430–441 (2006)

    Article  Google Scholar 

  10. Jung, H., Kim, Y., Lee, H., Shin, Y.: Advanced instructional design for successive E-learning: based on the successive approximation model (SAM). Int. J. E-Learn. 18(2), 191–204 (2019)

    Google Scholar 

  11. Fraoua, S.C., Zara, G., David, A.: Learning by serious game: case study. In : ICERI2020 Proceedings, pp. 5643–5650. IATED (2020)

    Google Scholar 

  12. Hammoudeh, A.: A Concise Introduction to Reinforcement Learning. Princess Suamaya University for Technology, Amman (2018)

    Google Scholar 

  13. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  14. Alier, M., Casañ Guerrero, M.J., Amo, D., Severance, C., Fonseca, D.: Privacy and E-learning: a pending task. Sustainability 13(16), 9206 (2021)

    Article  Google Scholar 

  15. Chrysafiadi, K., Virvou, M.: Student modeling approaches: a literature review for the last decade. Expert Syst. Appl. 40(11), 4715–4729 (2013)

    Article  Google Scholar 

  16. Sangrá, A., Raffaghelli, J. E., & Guitert‐Catasús, M.: Learning ecologies through a lens: ontological, methodological and applicative issues. a systematic review of the literature. Br. J. Educ. Technol. 50(4), 1619–1638 (2019)

    Google Scholar 

  17. Bower, M.: Pedagogy and technology-enhanced learning. In: Design of Technology-Enhanced Learning, pp. 35–63. Emerald Publishing Limited (2017)

    Google Scholar 

  18. Hammad, R., Khan, Z., Safieddine, F., Ahmed, A.: A review of learning theories and models underpinning technology-enhanced learning artefacts. World J. Sci. Technol. Sustain. Dev. 17(4), 341–354 (2020)

    Article  Google Scholar 

  19. Bada, S.O., Olusegun, S.: Constructivism learning theory: a paradigm for teaching and learning. J. Res. Method Educ. 5(6), 66–70 (2015)

    Google Scholar 

  20. Trepel, C., Fox, C.R., Poldrack, R.A.: Prospect theory on the brain? toward a cognitive neuroscience of decision under risk. Cogn. Brain Res. 23(1), 34–50 (2005)

    Article  Google Scholar 

  21. Zaraté, P., Belaud, J.P., Camilleri, G. (eds.): Collaborative Decision Making: Perspectives and Challenges, vol. 176. IOS Press (2008)

    Google Scholar 

  22. Sinhababu, N.: The desire-belief account of intention explains everything. Noûs 47(4), 680–696 (2013)

    Article  Google Scholar 

  23. Ortigosa, A., Paredes, P., Rodriguez, P.: AH-questionnaire: an adaptive hierarchical questionnaire for learning styles. Comput. Educ. 54(4), 999–1005 (2010)

    Article  Google Scholar 

  24. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Elia Fraoua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fraoua, K.E., David, A. (2023). The Autonomous Platform Using the Markov Chain. In: Zaphiris, P., et al. HCI International 2023 – Late Breaking Papers. HCII 2023. Lecture Notes in Computer Science, vol 14060. Springer, Cham. https://doi.org/10.1007/978-3-031-48060-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48060-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48059-1

  • Online ISBN: 978-3-031-48060-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics