Abstract
This work focuses on the use of the Markov chain to optimize the learning path for learner. We observe that most of them during their online courses can be are victims of boredom which pushes them to give up their courses and consequently do not obtain the certificate, of which they had the ambition to obtain the formation and the diploma. We based our works on Q-Learning methods that seem to meet our need to satisfy students’ demand for titles and certificates without getting bored.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fraoua, K.E., Leblanc, J.-M., David, A.: Use of an emotional chatbot for the analysis of a discussion forum for the improvement of an E-learning platform. In: Zaphiris, P., Ioannou, A. (eds.) HCII 2020. LNCS, vol. 12206, pp. 25–35. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50506-6_3
Picard, R.W.: Affective Computing. MIT press, Cambridge (2000)
Elias, M.J., Zins, J.E., Weissberg, R.P.: Promoting social and emotional learning: guidelines for educators. In: ASCD (1997)
Dehaene, S.: How We Learn: The New Science of Education and the Brain. Penguin, UK (2020)
Qazi, A., Hardaker, G., Ahmad, I.S., Darwich, M., Maitama, J.Z., Dayani, A.: The role of information & communication technology in elearning environments: a systematic review. IEEE Access 9, 45539–45551 (2021)
Wahlstedt, A., Pekkola, S., Niemelä, M.: From e-learning space to e-learning place. Br. J. Edu. Technol. 39(6), 1020–1030 (2008)
Dumas, A., Lépine, V., Martin-Juchat, F.: Le tournant affectif dans les études en communication organisationnelle. Commun. Organ., 75–93 (2023)
Nwana, H.S.: Intelligent tutoring systems: an overview. Artif. Intell. Rev. 4(4), 251–277 (1990)
Allen, W.C.: Overview and evolution of the ADDIE training system. Adv. Dev. Hum. Resour. 8(4), 430–441 (2006)
Jung, H., Kim, Y., Lee, H., Shin, Y.: Advanced instructional design for successive E-learning: based on the successive approximation model (SAM). Int. J. E-Learn. 18(2), 191–204 (2019)
Fraoua, S.C., Zara, G., David, A.: Learning by serious game: case study. In : ICERI2020 Proceedings, pp. 5643–5650. IATED (2020)
Hammoudeh, A.: A Concise Introduction to Reinforcement Learning. Princess Suamaya University for Technology, Amman (2018)
Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender Systems: An Introduction. Cambridge University Press, Cambridge (2010)
Alier, M., Casañ Guerrero, M.J., Amo, D., Severance, C., Fonseca, D.: Privacy and E-learning: a pending task. Sustainability 13(16), 9206 (2021)
Chrysafiadi, K., Virvou, M.: Student modeling approaches: a literature review for the last decade. Expert Syst. Appl. 40(11), 4715–4729 (2013)
Sangrá, A., Raffaghelli, J. E., & Guitert‐Catasús, M.: Learning ecologies through a lens: ontological, methodological and applicative issues. a systematic review of the literature. Br. J. Educ. Technol. 50(4), 1619–1638 (2019)
Bower, M.: Pedagogy and technology-enhanced learning. In: Design of Technology-Enhanced Learning, pp. 35–63. Emerald Publishing Limited (2017)
Hammad, R., Khan, Z., Safieddine, F., Ahmed, A.: A review of learning theories and models underpinning technology-enhanced learning artefacts. World J. Sci. Technol. Sustain. Dev. 17(4), 341–354 (2020)
Bada, S.O., Olusegun, S.: Constructivism learning theory: a paradigm for teaching and learning. J. Res. Method Educ. 5(6), 66–70 (2015)
Trepel, C., Fox, C.R., Poldrack, R.A.: Prospect theory on the brain? toward a cognitive neuroscience of decision under risk. Cogn. Brain Res. 23(1), 34–50 (2005)
Zaraté, P., Belaud, J.P., Camilleri, G. (eds.): Collaborative Decision Making: Perspectives and Challenges, vol. 176. IOS Press (2008)
Sinhababu, N.: The desire-belief account of intention explains everything. Noûs 47(4), 680–696 (2013)
Ortigosa, A., Paredes, P., Rodriguez, P.: AH-questionnaire: an adaptive hierarchical questionnaire for learning styles. Comput. Educ. 54(4), 999–1005 (2010)
Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fraoua, K.E., David, A. (2023). The Autonomous Platform Using the Markov Chain. In: Zaphiris, P., et al. HCI International 2023 – Late Breaking Papers. HCII 2023. Lecture Notes in Computer Science, vol 14060. Springer, Cham. https://doi.org/10.1007/978-3-031-48060-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-48060-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48059-1
Online ISBN: 978-3-031-48060-7
eBook Packages: Computer ScienceComputer Science (R0)