Abstract
Artificial Intelligence (AI) provides a fundamental aid in building operations, allowing infrastructure inspection and compliance with safety standards. In the collaborative tasks involved, detecting areas of interest, such as surface defects, is crucial. A drawback of supervised AI-based approaches is that they require manual annotation, which entails additional costs. This paper presents a novel unsupervised anomaly detection approach for locating defects based on generative models that learn the distribution of defect-free images. Using attention maps to validate in a subset, we propose a formulation that does not require accessing labelled images, enabling task automation, maintenance optimisation and cost reduction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Gupta, A.: Current research opportunities of image processing and computer vision. Comput. Sci. (2019). https://doi.org/10.7494/csci.2019.20.4.3163. ISSN 2300-7036, 1508-2806
Tian, H., Wang, T., Liu, Y., Qiao, X., Li, Y.: Computer vision technology in agricultural automation—a review. Inf. Process. Agric. (2020). https://doi.org/10.1016/j.inpa.2019.09.006
Paneru, S., Jeelani, I.: Computer vision applications in construction: current state, opportunities & challenges. Autom. Constr. (2021). https://doi.org/10.1016/j.autcon.2021.103940. Accessed 12 May 2023
Taheri, H., Gonzalez Bocanegra, M., Taheri, M.: Artificial intelligence, machine learning and smart technologies for nondestructive evaluation. Sensors (Basel, Switzerland) 22 (2022). https://doi.org/10.3390/s22114055. ISSN 1424-8220
Saberironaghi, A., Ren, J., El-Gindy, M.: Defect detection methods for industrial products using deep learning techniques: a review. Algorithms (2023). https://doi.org/10.3390/a16020095. ISSN 1999-4893
Bhatt, P.M., Malhan, R.K., Rajendran, P., et al.: Image-based surface defect detection using deep learning: a review. J. Comput. Inf. Sci. Eng. (2021). https://doi.org/10.1115/1.4049535. ISSN 1530-9827, 1944-7078
Bommes, L., Pickel, T., Buerhop-Lutz, C., Hauch, J., Brabec, C., Peters, I.M.: Computer vision tool for detection, mapping, and fault classification of photovoltaics modules in aerial IR videos. Progress Photovoltaics: Res. Appl. (2021). https://doi.org/10.1002/pip.3448. ISSN 1099-159X
Mery, D., Arteta, C.: Automatic defect recognition in X-ray testing using computer vision (2017). https://doi.org/10.1109/WACV.2017.119
Fragidis, G., Konstantas, D.: Customer-centric service design: featuring service use in life practices. In: Camarinha-Matos, L.M., Ortiz, A., Boucher, X., Osário, A.L. (eds.) PRO-VE 2022. IFIPAICT, vol. 662, pp. 182–193. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14844-6_15
Enrique, D.V., Soares, A.L.: Cognitive digital twin enabling smart product-services systems: a literature review. In: Camarinha-Matos, L.M., Ortiz, A., Boucher, X., Osório, A.L. (eds.) PRO-VE 2022. IFIPAICT, vol. 662, pp. 77–89. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14844-6_7
Tang, Y., Lin, Y., Huang, X., Yao, M., Huang, Z., Zou, X.: Grand challenges of machine-vision technology in civil structural health monitoring. Artif. Intell. Evol. (2020). https://doi.org/10.37256/aie.112020250. ISSN 2717-5952
Fang, W., Ding, L., Love, P.E.D., et al.: Computer vision applications in construction safety assurance. Autom. Constr. (2020). https://doi.org/10.1016/j.autcon.2019.103013. ISSN 0926-5805
Spencer, B.F., Hoskere, V., Narazaki, Y.: Advances in computer vision-based civil infrastructure inspection and monitoring. Engineering 5 (2019). https://doi.org/10.1016/j.eng.2018.11.030. ISSN 2095-8099
da Silva, W.R.L., de Lucena, D.S.: Concrete cracks detection based on deep learning image classification. In: Proceedings, vol. 2 (2018). https://doi.org/10.3390/ICEM18-05387. ISSN 2504-3900
Yang, L., Li, B., Li, W., Liu, Z., Yang, G., Xiao, J.: Deep Concrete Inspection Using Unmanned Aerial Vehicle Towards CSSC Database (2017)
Cha, Y.-J., Choi, W., Büyüköztürk, O.: Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civil Infrastruct. Eng. (2017). https://doi.org/10.1111/mice.12263
Ai, D., Jiang, G., Lam, S.-K., He, P., Li, C.: Computer vision framework for crack detection of civil infrastructure—a review. Eng. Appl. Artif. Intell. (2023). https://doi.org/10.1016/j.engappai.2022.105478. ISSN 0952-1976
Islam, M.M., Hossain, M.B., Akhtar, M.N., Moni, M.A., Hasan, K.F.: CNN based on transfer learning models using data augmentation and transformation for detection of concrete crack. Algorithms 15(8), 287 (2022)
Zhang, A., Wang, K.C.P., Li, B., et al.: Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Comput.-Aided Civil Infrastruct. Eng. (2017). https://doi.org/10.1111/mice.12297
Pei, L., Sun, Z., Xiao, L., Li, W., Sun, J., Zhang, H.: Virtual generation of pavement crack images based on improved deep convolutional generative adversarial network. Eng. Appl. Artif. Intell. (2021). https://doi.org/10.1016/j.engappai.2021.104376
Chow, J.K., Su, Z., Wu, J., Tan, P.S., Mao, X., Wang, Y.H.: Anomaly detection of defects on concrete structures with the convolutional autoencoder. Adv. Eng. Inform. (2020). https://doi.org/10.1016/j.aei.2020.101105
Rastin, Z., Ghodrati Amiri, G., Darvishan, E.: Unsupervised structural damage detection technique based on a deep convolutional autoencoder. Shock Vibration (2021). https://doi.org/10.1155/2021/6658575
Titus, A.J., Wilkins, O.M., Bobak, C.A., Christensen, B.C.: Unsupervised deep learning with variational autoencoders applied to breast tumor genome-wide DNA methylation data with biologic feature extraction. Bioinformatics (2018). https://doi.org/10.1101/433763
Foster, D.: Generative deep learning: teaching machines to paint, write, compose, and play (2019)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization, pp. 618–626 (2017)
Silva-Rodrıguez, J., Naranjo, V., Dolz, J.: Constrained unsupervised anomaly segmentation. Med. Image Anal. 80, 102 526 (2022)
Özgenel, Ç.F., Sorguç, A.G.: Performance comparison of pretrained convolutional neural networks on crack detection in buildings. In: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, vol. 35, pp. 1–8. IAARC Publications (2018)
Mahmoudi, R., Benameur, N., Mabrouk, R., Mohammed, M.A., Garcia-Zapirain, B., Bedoui, M.H.: A deep learning-based diagnosis system for COVID-19 detection and pneumonia screening using CT imaging. Appl. Sci. (2022). https://doi.org/10.3390/app12104825
Ye, W., Deng, S., Ren, J., Xu, X., Zhang, K., Du, W.: Deep learning-based fast detection of apparent concrete crack in slab tracks with dilated convolution. Constr. Build. Mater. 329, 127 157 (2022)
Shamsabadi, E.A., Xu, C., Rao, A.S., Nguyen, T., Ngo, T., Dias-da-Costa, D.: Vision transformer-based autonomous crack detection on asphalt and concrete surfaces. Autom. Constr. 140, 104 316 (2022)
Funding
This work has received funding from Horizon Europe, the European Union’s Framework Programme for Research and Innovation, under Grant Agreement No. 101058054 (TURBO) and No. 101057404 (ZDZW). The work of Rocío del Amor has been supported by the Spanish Ministry of Universities (FPU20/05263).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
García-de-la-Puente, N.P., del Amor, R., García-Torres, F., Colomer, A., Naranjo, V. (2023). Unsupervised Defect Detection for Infrastructure Inspection. In: Quaresma, P., Camacho, D., Yin, H., Gonçalves, T., Julian, V., Tallón-Ballesteros, A.J. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2023. IDEAL 2023. Lecture Notes in Computer Science, vol 14404. Springer, Cham. https://doi.org/10.1007/978-3-031-48232-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-48232-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48231-1
Online ISBN: 978-3-031-48232-8
eBook Packages: Computer ScienceComputer Science (R0)