Skip to main content

Generating Adversarial Examples Using LAD

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2023 (IDEAL 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14404))

  • 389 Accesses

Abstract

Nowadays, Machine learning models are widely used in many fields and employed to solve problems from different sectors. However, we often face issues when running these models in case the training data is insufficient. These issues happen when the dataset available is small or only part of it is available because of its sensitive content or even because the dataset is imbalanced. Thus, synthetic data generation is needed to provide data similar to actual data. We have proposed the use of the Logical Analysis of Data methodology to generate adversarial data from any given dataset. For our study, we have used an intrusion detection dataset, and the results demonstrate the potential of Logical Analysis of Data by evaluating adversarial datasets using various machine learning classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almuallim, H., Dietterich, T.G.: Learning Boolean concepts in the presence of many irrelevant features. Artif. Intell. 69(1–2), 279–305 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A.: Logical analysis of numerical data. Math. Program. 79(1–3), 163–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.: An implementation of logical analysis of data. IEEE Trans. Knowl. Data Eng. 12(2), 292–306 (2000)

    Article  Google Scholar 

  4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    Article  MATH  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Chapman and Hall, Boca Raton (1984)

    Google Scholar 

  7. Chauhan, S., Gangopadhyay, S.: Design of intrusion detection system based on logical analysis of data (LAD) using information gain ratio. In: Dolev, S., Katz, J., Meisels, A. (eds.) CSCML 2022. LNCS, vol. 13301, pp. 47–65. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07689-3_4

    Chapter  Google Scholar 

  8. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)

    Google Scholar 

  9. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  10. Cox, D.R.: The regression analysis of binary sequences. J. Royal Stat. Soc. Ser. B (Methodological) 20(2), 215–242 (1958)

    Google Scholar 

  11. Crama, Y., Hammer, P.L., Ibaraki, T.: Cause-effect relationships and partially defined Boolean functions. Ann. Oper. Res. 16, 299–325 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Das, T.K., Gangopadhyay, S., Zhou, J.: SSIDS: semi-supervised intrusion detection system by extending the logical analysis of data. CoRR abs/2007.10608 (2020). https://arxiv.org/abs/2007.10608

  13. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  16. Hammer, P.: Partially defined Boolean functions and cause-effect relationships. In: International Conference on Multi-attribute Decision Making Via OR-based Expert Systems. University of Passau, Passau, Germany (1986)

    Google Scholar 

  17. Kantartopoulos, P., Pitropakis, N., Mylonas, A., Kylilis, N.: Exploring adversarial attacks and defences for fake twitter account detection. Technologies 8(4), 64 (2020)

    Article  Google Scholar 

  18. Lejeune, M., Lozin, V., Lozina, I., Ragab, A., Yacout, S.: Recent advances in the theory and practice of logical analysis of data. Eur. J. Oper. Res. 275(1), 1–15 (2019). https://doi.org/10.1016/j.ejor.2018.06.011

    Article  MathSciNet  MATH  Google Scholar 

  19. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pp. 1003–1011 (2009)

    Google Scholar 

  20. Papadopoulos, P., Thornewill von Essen, O., Pitropakis, N., Chrysoulas, C., Mylonas, A., Buchanan, W.J.: Launching adversarial attacks against network intrusion detection systems for IoT. J. Cybersecurity Priv. 1(2), 252–273 (2021)

    Google Scholar 

  21. Pitropakis, N., Panaousis, E., Giannetsos, T., Anastasiadis, E., Loukas, G.: A taxonomy and survey of attacks against machine learning. Comput. Sci. Rev. 34, 100199 (2019)

    Article  MathSciNet  Google Scholar 

  22. Ratner, A.J., De Sa, C.M., Wu, S., Selsam, D., Ré, C.: Data programming: creating large training sets, quickly. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  MATH  Google Scholar 

  24. Treder-Tschechlov, D., Reimann, P., Schwarz, H., Mitschang, B.: Approach to synthetic data generation for imbalanced multi-class problems with heterogeneous groups. BTW 2023 (2023)

    Google Scholar 

  25. Van, N.T., Thinh, T.N., et al.: An anomaly-based network intrusion detection system using deep learning. In: 2017 International Conference on System Science and Engineering (ICSSE), pp. 210–214. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sneha Chauhan or Aditi Kar Gangopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chauhan, S., Mahmoud, L., Sheth, T., Gangopadhyay, S., Gangopadhyay, A.K. (2023). Generating Adversarial Examples Using LAD. In: Quaresma, P., Camacho, D., Yin, H., Gonçalves, T., Julian, V., Tallón-Ballesteros, A.J. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2023. IDEAL 2023. Lecture Notes in Computer Science, vol 14404. Springer, Cham. https://doi.org/10.1007/978-3-031-48232-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48232-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48231-1

  • Online ISBN: 978-3-031-48232-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics