Skip to main content

Prediction and Uncertainty Estimation in Power Curves of Wind Turbines Using ε-SVR

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2023 (IDEAL 2023)

Abstract

One of the most important challenges in the field of wind turbines is the modeling of the power curve, since it serves as an adequate indicator of their performance and state of health. This curve relates the electrical power generated by the turbine to the available wind speed. Due to its highly complex nature, one of the approaches to address this issue is through machine learning techniques. In this paper we use epsilon support vector regression (ε-SVR) to predict this power curve. Equally important to the model is the uncertainty associated with this prediction. To estimate the uncertainty, probabilistic analysis of the model residuals is applied. This model has been compared with the Gaussian process regression (GPR) model, widely used in various scientific fields. The results show that the ε-SVR model with uncertainty estimation is able to faithfully characterize the shape of the power curve and the corresponding prediction uncertainty. Furthermore, this model improves the results obtained with GPR in terms of some evaluation metrics, while achieving a better adjustment of the uncertainty and requiring a lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strategic Energy Technology Information System (SETIS). https://setis.ec.europa.eu/index_en. Last accessed 01 Jul 2023

  2. Zhou, B., Zhang, Z., Li, G., Yang, D., Santos, M.: Review of key technologies for offshore floating wind power generation. Energies 16(2), 710 (2023)

    Article  Google Scholar 

  3. Sierra-García, J.E., Santos, M.: Redes neuronales y aprendizaje por refuerzo en el control de turbinas eólicas. Revista Iberoamericana de Automática e Informática industrial 18(4), 327–335 (2021)

    Article  Google Scholar 

  4. Pandit, R., Astolfi, D., Hong, J., Infield, D., Santos, M.: SCADA data for wind turbine data-driven condition/performance monitoring: a review on state-of-art, challenges and future trends. Wind Eng. 47(2), 422–441 (2023)

    Article  Google Scholar 

  5. Uluyol, O., Parthasarathy, G., Foslien, W., Kim, K.: Power curve analytic for wind turbine performance monitoring and prognostics. In: Annual Conference of the PHM Society, vol. 3, no. 1 (2011)

    Google Scholar 

  6. Barthelmie, R.J., Murray, F., Pryor, S.C.: The economic benefit of short-term forecasting for wind energy in the UK electricity market. Energy Policy 36(5), 1687–1696 (2008)

    Article  Google Scholar 

  7. Gray, C.S., Watson, S.J.: Physics of failure approach to wind turbine condition based maintenance. Wind Energy 13(5), 395–405 (2010). https://doi.org/10.1002/we.360

    Article  Google Scholar 

  8. Pandit, R., Infield, D., Santos, M.: Accounting for environmental conditions in data-driven wind turbine power models. IEEE Trans. Sustain. Energy 14(1), 168–177 (2022)

    Article  Google Scholar 

  9. Long, H., Wang, L., Zhang, Z., Song, Z., Xu, J.: Data-driven wind turbine power generation performance monitoring. IEEE Trans. Ind. Electron. 62(10), 6627–6635 (2015)

    Article  Google Scholar 

  10. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press. ISBN 0–262–18253-X (2006)

    Google Scholar 

  11. Pandit, R., Infield, D.: Gaussian process operational curves for wind turbine condition monitoring. Energies 11(7), 1631 (2018)

    Article  Google Scholar 

  12. Gill, S., Stephen, B., Galloway, S.: Wind turbine condition assessment through power curve copula modeling. IEEE Trans. Sustain. Energy 3(1), 94–101 (2012)

    Article  Google Scholar 

  13. Marvuglia, A., Messineo, A.: Monitoring of wind farms’ power curves using machine learning techniques. Appl. Energy 98, 574–583 (2012)

    Article  Google Scholar 

  14. Vidal, Y., Pozo, F., Tutivén, C.: Wind turbine multi-fault detection and classification based on SCADA data. Energies 11(11), 3018 (2018)

    Article  Google Scholar 

  15. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag, New York (1995)

    Book  MATH  Google Scholar 

  16. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  17. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  18. Lin, C.-J., Weng, R.C.: Simple probabilistic predictions for support vector regression. Technical report, Department of Computer Science, National Taiwan University (2004)

    Google Scholar 

  19. Penmanshiel Wind Farm Data. https://doi.org/10.5281/zenodo.5946808. Last accessed 01 Jul 2023

  20. International Electrotechnical Commission.: Wind energy generation systems—Part 12–1: Power performance measurements of electricity producing wind turbines. International Electrotechnical Commission (IEC), IEC Central Office, vol. 3, pp. 2017–03 (2017)

    Google Scholar 

  21. Ramos-Teodoro, J., Rodríguez, F.: Distributed energy production, control and management: a review of terminology and common approaches. Revista Iberoamericana de Automática e Informática industrial 19(3), 233–253 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the Spanish Ministry of Science and Innovation under project MCI/AEI/FEDER number PID2021-123543OB-C21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel García-Vaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Vaca, M.Á., Sierra-García, J.E., Santos, M. (2023). Prediction and Uncertainty Estimation in Power Curves of Wind Turbines Using ε-SVR. In: Quaresma, P., Camacho, D., Yin, H., Gonçalves, T., Julian, V., Tallón-Ballesteros, A.J. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2023. IDEAL 2023. Lecture Notes in Computer Science, vol 14404. Springer, Cham. https://doi.org/10.1007/978-3-031-48232-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48232-8_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48231-1

  • Online ISBN: 978-3-031-48232-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics