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Abstract. This work investigates the potential of Federated Learning (FL) for official
statistics and shows how well the performance of FL models can keep up with centralized
learning methods. FL is particularly interesting for official statistics because its utilization
can safeguard the privacy of data holders, thus facilitating access to a broader range of
data. By simulating three different use cases, important insights on the applicability of
the technology are gained. The use cases are based on a medical insurance data set, a
fine dust pollution data set and a mobile radio coverage data set – all of which are from
domains close to official statistics. We provide a detailed analysis of the results, including a
comparison of centralized and FL algorithm performances for each simulation. In all three
use cases, we were able to train models via FL which reach a performance very close to the
centralized model benchmarks. Our key observations and their implications for transferring
the simulations into practice are summarized. We arrive at the conclusion that FL has the
potential to emerge as a pivotal technology in future use cases of official statistics.

1 Introduction

The aim of national statistical offices (NSOs) is to develop, produce and disseminate high-quality
official statistics that can be considered a reliable portrayal of reality [Yun+22]. In order to
effectively capture our rapidly changing world, NSOs are currently undergoing a process of mod-
ernization, leveraging new data sources, methodologies and technologies.

NSOs have effectively extracted information from new data sources, such as scanner data3 or
Mobile Network Operator (MNO) data4. However, the potential of numerous other data sources,
including privately held data5 or data from certain official entities, remains largely untapped.
Legal frameworks, which are fundamental to official statistics, only adapt slowly to changing data
needs and currently hinder access to valuable new data sources. Cooperation with potential data
donors faces restrictions due to concerns about privacy, confidentiality, or disclosing individual
business interests.

In the meantime, the methodology employed by NSOs is evolving, with machine learning
(ML) gaining substantial popularity and, as a result, undergoing a process of establishment. ML
has been applied in various areas of official statistics (e.g. [DB17; BDF18; Eur22]), and new
frameworks such as [Yun+22] address the need to measure the quality of ML.

Within official statistics, ML tools have proven effective in processing new data sources, such as
text and images, or enabling the automation of statistical production tasks, including classifying
information or predicting not (yet) available data.

Federated learning (FL) is an emerging approach within ML that provides immense un-
explored potential for official statistics. It addresses the challenge of extracting and exchanging
valuable global information from new data sources without compromising the privacy of indi-
vidual data owners. Introduced in [McM+17], FL enables collaborative model training across
distributed data sources while preserving data privacy by keeping the data localized. In scenar-
ios where external partners are unwilling to share individual-level information due to regulatory
or strategic considerations, but still aim to analyze or disseminate global insights in their field
of application, NSOs can offer trustworthy solutions by utilizing FL. In return, FL empowers
contributing NSOs to integrate new data sources into statistical production.

3 Scanner data in consumer price statistics and for determining regional price differences https://www.
destatis.de/EN/Service/EXSTAT/Datensaetze/scanner-data.html, accessed on July 17, 2023

4 Use of MNO data https://cros-legacy.ec.europa.eu/content/12-use-mno-data_en, accessed on
July 17, 2023

5 Guidance on private sector data sharing https://digital-strategy.ec.europa.eu/en/policies/p

rivate-sector-data-sharing, accessed on July 17, 2023
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Although FL has been successfully applied to many domains, to the best of our knowledge,
besides our work only one currently presented study investigates the applicability of FL to the
field of official statistics. In a proof of concept (PoC) by the United Nations (UN), FL is applied
to estimate human activity based on data collected from smart and wearable devices [Tem22;
Buc23]. The PoC emphasizes operative aspects of FL coordinating multiple NSOs and benefits
of additional privacy enhancing technologies.

The main contribution of this paper lies in presenting three additional applications of FL that
address current data need representative for official statistics. Complementary, we emphasize
measuring the numerical predictive performance and reproducibility by openly sharing our code,
which, in two instances, is applied to publicly available data. In the first simulation related
to health, individual healthcare costs are predicted utilizing tools for regression. In the second
simulation related to sustainability, current fine dust pollution levels are classified based on
meteorological data. In the third simulation related to mobility, the daily range of movement of
mobile phone users are classified by MNO data. The first two simulations focus on assessing the
estimation performance achieved by FL in comparison to centralized models that have complete
access to all available data. The third application presents valuable insights and lessons learned
from the implementation of FL, involving the active participation of a real external partner.
We draw conclusions on the applicability of FL in NSOs in section 5, which are summarized in
section 6.

2 Background

Before presenting the simulated use cases in section 3, this section provides an overview of FL
and privacy challenges with ML.

2.1 Federated Learning

In FL, a centralized server (or aggregator, in our case a NSO) coordinates the process of training
a ML model (mainly deep neural networks) by initializing a global model and forwarding it to the
data owners (clients). In each training round, each client trains the model with their private data
and sends the resulting model back to the central server. The central server uses a FL method to
aggregate the updates of the participants into the next iteration of the global model and starts the
next round by distributing the updated model to the clients. This process is repeated to improve
the performance of the model.

NSOs primarily strive to generate global models that accurately represent the available data,
which, in our setting, is distributed among multiple clients. Thus, we compare the performance
of FL to models with access to the combined data of all clients. Alternatively, if upcoming appli-
cations seek to supply each client with an optimized individual model by leveraging information
from the other clients, personalized FL can be used. This approach is not covered in this paper
but can be found in [KKP20; Hu+18].

2.2 Privacy Challenges with Machine Learning

When training data for a ML model is distributed among multiple parties, the data traditionally
needs to be combined on a central server prior to training an ML model. FL has become a popular
alternative to this approach, as it allows to train a model in a distributed way from the start,
without the need to aggregate training data first. Thus, using FL has the privacy advantage that
there is no need to exchange private training data. Instead, data holders can train a global model
collaboratively in a distributed fashion, without transferring any data record.

But although FL makes sharing private training data obsolete, there are other privacy chal-
lenges inherent to ML which have also been observed for FL. While ML models are always trained
to fulfill a dedicated task, often more information than strictly necessary for fulfilling the task
is extracted into the model weights during training [SRS17]. This excessive, and potentially pri-
vate, information in the model weights is called privacy leakage. In general, this leakage can be
leveraged by any party who has full access to a model and its trained weights.

One concrete example of such a privacy attack is training data extraction [ZLH19], which allows
extracting data records from a trained model. Another known attack is model inversion [HAP17],
where repeated requests to the model are used to reconstruct class representatives. Membership
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inference [Sho+17] aims at individual training data records: the attack’s target is to decide
whether a specific data record was part of the training data. Building on the original proposal,
other works have transferred membership inference attacks to the FL scenario [NSH19]. Last but
not least, property inference attacks [Mel+19] allow to deduce statistical properties of the target
model’s training data. This is especially relevant in FL scenarios, where the characteristics of
each client’s local data set can be highly sensitive, e.g., in medical domains.

The applicability of these attacks depends on the concrete use case, the type of model and
other factors. Concerning attacker models, i.e., the scenario in which an attack is executed, some
FL-specific attacks rely on a malicious aggregator. Nonetheless, all attacks mentioned above also
work in an environment where not the aggregator, but one of the FL clients is the attacker. Hence,
even if the aggregator can be trusted, e.g., because the aggregator’s role is assumed by a NSO,
these attacks can still be executed by other FL clients. Analyzing the individual privacy leakage
of the simulated use cases in this paper are out of scope. Nonetheless, raising awareness to these
issues, e.g., by communicating potential risks to clients in an FL scenario, should not be neglected.
Beyond this, strategies under the umbrella term privay-preserving machine learning (PPML) can
help to mitigate these risks [YZH21].

2.3 Frameworks

In our simulations, we use the frameworks TensorFlow6 for neural networks and TensorFlow
Federated7 for FL. We use PyCaret8 for automizing benchmark experiments in the centralized
settings and scikit-learn9 for data processing.

The code we have written for this work is openly available on GitHub10.

3 Simulations

Most relevant for NSOs is cross-silo FL, where a few reliable clients train a model, e.g. official
authorities. In contrast, cross-device FL uses numerous clients, e.g. smartphones, to train a model.
To analyze the potential of cross-silo FL for official statistics, we run simulations with three
different data sets. For each use case, we first compute benchmarks by evaluating centralized
ML models, i.e., models which are trained on the whole data set. Afterwards, we split the data
set and assign the parts to (simulated) FL clients for the FL simulation. This way, we have a
basis for interpreting the performance of the model resulting from the FL training simulation.
The performance metrics of the trained ML models (including coefficient of determination R2 or
accuracy) are computed on test sets of each data set.

3.1 Medical insurance data

The demand for timely and reliable information on public health is steadily increasing. The
COVID-19 pandemic has significantly accelerated this trend, raising questions about the financial
feasibility of our healthcare system and the availability of medical supplies.

Thus, our first experiment focuses on modeling a regression problem related to healthcare by
considering the following question: Given an individual’s health status characteristics, what is
the magnitude of their insurance charges? We aim to address two primary questions. Firstly, we
explore the suitability of neural networks in comparison to other models for the regression task.
Secondly, we assess the feasibility of utilizing a simulated decentralized data set in an FL setting
to tackle the problem.

6 TensorFlow https://www.tensorflow.org/, accessed on July 17, 2023
7 TensorFlow Federated: Machine learning on decentralized data https://www.tensorflow.org/feder

ated, accessed on July 17, 2023
8 PyCaret https://pycaret.org/, accessed on July 17, 2023
9 scikit-learn, Machine Learning in Python https://scikit-learn.org/, accessed on July 17, 2023

10 Code repository for this paper: https://www.github.com/joshua-stock/fl-official-statistics,
accessed on July 17, 2023. Note that for the mobile radio coverage simulation, the code has only been
executed locally on the private data set, hence it is not included in the repository.

3

https://www.tensorflow.org/
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://pycaret.org/
https://scikit-learn.org/
https://www.github.com/joshua-stock/fl-official-statistics


Data set The given data set links medical insurance premium charges to related individual
attributes11. Considered are the six features age, sex, bmi (body mass index), children (count),
smoker (yes/no) and four regions. In our studies, the feature region was excluded during FL
training and solely utilized for partitioning the data within the FL setting. In total, the data set
consists of 1338 complete records, i.e. there are no missing or undefined values. Also, the data set
is highly balanced: The values in age are evenly dispersed, just as the distribution of male and
female records is about 50/50 (attribute gender) and each region is represented nearly equally
often. The origin of the data is unknown, however its homogeneity and integrity suggest that it
has been created artificially.

Data preprocessing We encode the binary attributes sex and smoker into a numeric form (0 or
1). The attributes age, bmi and children are scaled to a range from 0 to 1. In the centralized
benchmarks, the attribute region is one-hot-encoded.

Setup We aim to investigate the suitability of neural networks for estimating insurance charges
and explore the extent to which this problem can be addressed using a FL approach. To achieve
this, we compare different models and evaluate their performance.

A basic fully connected neural network architecture, that takes five input features, is utilized.
The network consists of three hidden layers with 40, 40, and 20 units in each respective layer.
Following each layer, a Rectified Linear Unit (ReLU) activation function is applied. The final
output layer comprises a single neuron. To optimize the network, the Adam optimizer with a
learning rate of 0.05 is employed. In the federated setting, we utilize the same initial model but
integrate FedAdam for server updates. This decision is based on previous research [Red+20],
which emphasizes the benefits of adaptive server optimization techniques for achieving improved
convergence.

In the centralized approach, we allocate a training budget of 100 epochs. In contrast, the
federated approach incorporates 50 rounds of communication between the client and server during
training. Each round involves clients individually training the model for 50 epochs. To track the
running training, 10% evaluation data is used by each client in the FL setting and 20% is used in
the centralized scenario. It is neglected in calculating the final test performance. The remaining
shallow learning models undergo hyperparameter optimization using a random search approach
with a budget of 100 iterations. We evaluate all models using 5-fold cross validation.

Model R2(± std) Rel. loss (%)

neural network 81.5(4.01) 3.5

neural network (federated) 78.4(3.13) 7.2

random forest 84.5(4.73) 0.0

XGBoost 84.3 (3.96) 0.2

decision tree 84.1 (4.23) 0.5

k-nearest neighbors 74.4 (5.53) 12.0

linear regression 72.8 (6.07) 13.8

Table 1. Performance comparison of different prediction models for the medical insurance use case.
The performance is quantified using R2 in %, along with the corresponding standard deviation (std).
Additionally, the relative loss to the best centralized model (rel. loss) is reported.

Results We conduct a performance comparison of the models based on their 5-fold cross-validation
R2 scores and consider their standard deviation (see Table 1). The random forest model achieves
the highest performance with an R2 of 84.5 %, closely followed by XGBoost and Decision Tree,
which scores 0.2 and 0.5 percentage points lower, respectively.

11 US health insurance dataset https://www.kaggle.com/datasets/teertha/ushealthinsurancedatas
et, accessed on July 17, 2023
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The neural network model achieves an R2 of 81.5 %, indicating a performance 3.5 % worse
than the best model. However, it still provides a reasonable result compared to K-Nearest Neigh-
bors (KNN) and Linear Regression, which obtain significantly lower R2 scores of 12 % and 13.8 %,
respectively.

The Federated neural network demonstrates an R2 of 78.4 %, slightly lower than the centralized
neural network but 7.2 % worse than the random forest model. Notably, the Federated neural
network exhibits a lower standard deviation of 3.99 compared to the centralized neural network
(4.92) and also outperforms the random forest model (4.73) in this regard.

Discussion Based on the research questions, we can draw clear conclusions from the findings
presented in Table 1. Initially, we compared the performance of different models, including a simple
neural network. Although the random forest model outperformed others, its performance was only
3.5 % higher, distinguishing it significantly from models such as KNN and linear regression, which
performed 12 % and 13.8 % worse than the random forest, respectively.

The observed performance decrease from 81.5 % to 78.4 % in the FL approach can be at-
tributed to the training process and falls within a reasonable range. Considering the privacy
advantages of FL, the 7.2 % accuracy loss compared to the best model is acceptable, particularly
when taking into account the reduction in standard deviation from 4.92 to 3.99.

Although this example is hypothetical, it highlights the potential benefits and importance of
FL in official statistics. It showcases how FL provides access to crucial data sets for ML while
maintaining nearly negligible loss in accuracy compared to a centralized data set.

3.2 Fine dust pollution

Reducing air pollution is a significant part of the Sustainable Development Goals (SDGs) estab-
lished by the United Nations12. To measure progress toward achieving SDGs, NGOs and other
data producing organizations developed a set of 231 internationally comparable indicators, in-
cluding annual mean levels of fine particulate matter (e.g. PM2.5 and PM10). [Hu+18] showed
that personalized FL can be used to extract timely high frequent information on air pollution
more accurately than models using centralized data.

Fig. 1. Location of meteorological stations for the fine dust pollution simulation on a map of Beijing,
China. 12 of the 13 stations are included in the public data set which we have used for our simulations.
The dashed lines mark regions of the “Region-Learning” approach in [Hu+18]. Image source: [Hu+18].

In our second use case, we provide a comparison between centralized and FL models (without
personalization) and make the developed code and methods accessible. It should be noted that we
utilize a slightly different data set and methodology compared to [Hu+18], which we explain at
the end of this section. We model a classification task in which the current fine dust pollution is

12 Air quality and health https://www.who.int/teams/environment-climate-change-and-health/

air-quality-and-health/policy-progress/sustainable-development-goals-air-pollution,
accessed on July 17, 2023
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inferred based on meteorological input data. More precisely, 48 consecutive hourly measurements
are used to make a prediction for the current PM2.5 pollution (the total weight of particles smaller
than 2.5 µm in one m3). The output of the predictor is one of the three classes low, medium or
high. The thresholds for each class are chosen in a way such that the samples of the whole data
set are distributed evenly among the three classes.

Data set The data set we use is a multi-feature air quality and weather data set [Zha+17] which
is publicly available online13. It consists of hourly measurements of 12 meteorological stations
in Beijing, recorded over a time span of 4 years (2013–2017). Figure 1 depicts the locations of
the 12 stations in Beijing. In total, more than 420 000 data records are included in the data set.
Although some attributes are missing for some data records, most records have data for all the 17
attributes. An example plot for the two attributes PM2.5 and temperature is shown in Figure 2.

Fig. 2. Example plot for the data of one meteorological station and the two features PM2.5 and temper-
ature. The four-year time span is clearly visible by the temperature wave, due to hot summers and cold
winters.

Data preprocessing To complete the missing data records, we use linear interpolation. We apply
one-hot encoding to the wind direction attribute. All other features are scaled to a range from
0 to 1. For the attributes PM10, SO2, NO2, CO and O3, we observe a high correlation with the
target attribute and thus exclude them from training. 80% of the data are used as training data,
the rest is used as test data.

Setup As in the first use case, we implement a centralized learning benchmark and compare it with
a FL approach. We model one FL client per meteorological station and split the data accordingly,
while the benchmark model is trained with data from all 12 stations. In both settings, we use
neural networks with LSTM (long-short term memory) layers and apply 5-fold cross validation.
The architecture of the neural networks is similar across both settings and has been manually
tuned to reach a good performance: The input layer is followed by a 10-neuron LSTM layer, a
dropout layer with a dropout rate of 25%, a 5-neuron LSTM layer, another dropout layer with a
dropout rate of 35% and a 3-neuron dense layer for the classification output. For the same reasons
as in the first use case, we use the Adam optimizer and apply a learning rate of 0.05 on the server
and 0.005 on the client. The client learning rate is decreased every 64 epochs by a factor of 10 to
facilitate fine-tuning in later stages of the training. The total training budget we have allocated
is 10 epochs for centralized learning and 200 epochs for FL (with a single round of local training
per epoch).

13 Beijing multi-site air-quality data set https://www.kaggle.com/datasets/sid321axn/beijing-mul
tisite-airquality-data-set, accessed on July 17, 2023
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Results A summary of our results for the fine dust pollution use case is provided in Table 2.
Depicted are the means of our 5-fold cross validation experiments.

The centralized learning benchmark reaches a mean classification accuracy of 72.4%, with
similarly high numbers for precision and recall (72.8%, respectively 72.3%). In comparison, the
FL classifier reaches a performance of both an accuracy and a recall of 68.0% and a precision of
67.9%. The relative standard deviation is higher in the FL scenario for all three metrics, reaching
from +2.67 percentage points (accuracy) to +2.9 percentage points (both precision and recall).

An exemplary confusion matrix for one of the five resulting models of the centralized learning
is depicted in Table 3. Most misclassifications are made for the medium class. The same could be
observed for the other models (both in centralized and federated learning).

Model Accuracy (± std) Precision (± std) Recall (± std) Rel. loss (%)

neural network 72.4% (4.92) 72.8% (8.66) 72.3% (8.10) 0.0

neural network (fed.) 68.0% (7.59) 67.9% (10.05) 68.0% (9.59) 5.9-6.7

Table 2. Performance in the fine dust pollution simulation. The span of the relative loss refers to all
three metrics.

true class / predicted class low medium high

low 114 450 23 712 5769

medium 23 635 80 718 33 754

high 1944 24 629 111 581

Table 3. Exemplary confusion matrix for one of the five models in the cross-validation training of the
centralized model for the fine dust pollution use case.

Discussion Compared to the first use case, the training database is significantly larger. With 12
clients, there are also four times as many participants in the FL scenario as in the first use case.
Still, the performance decrease is small, with an accuracy of 68.0% (FL) compared to 72.4% in
the centralized training scenario.

Apart from preprocessing the data set, another time-consuming part of the engineering was
tuning the hyperparameters of the FL training. Tools for automatic FL hyperparameter opti-
mization were out of scope for this work, thus it was necessary to manually trigger different trial
runs with varying hyperparameters.

Comparison with literature The authors of [Hu+18] compare the results of their personalized
FL strategy “Region-Learning” to a centralized learning baseline and standard FL. Although
according to the authors, their personalized FL approach outperforms the other two approaches
(averaged over the regions by 5 percentage points compared to standard FL), we want to stress
that Region-Learning has another goal than standard FL – namely multiple specialized models,
and not one global model as in standard FL and most use cases for official statistics (also see
subsection 2.1).

Furthermore, Hu et al. have not provided sufficient information to retrace their experiments.
Especially the number of classes for PM2.5 classification and information on the features used for
training the classifiers are missing, so that their results are hard to compare to ours. For example,
setting the number of classes to 2 and using all features of the data set (including the other
pollution attributes PM10, SO2 etc.) would significantly ease the estimation task. Also, we have
no information on whether cross validation was applied in the work of Hu et al. Two more hints
in the paper [Hu+18] suggest that they have used a slightly different data set than we have: The
data set they describe includes “more than 100 000” data records from 13 meteorological stations
in Beijing, while our data set contains more than 420 000 records from 12 stations.
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One consistency across both their work and ours is the accuracy drop from centralized learning
to FL, with 4 percentage points in [Hu+18] and 4.4 percentage points in our work.

3.3 Mobile radio (LTE)

Mobile Network Operator (MNO) data is a valuable source for obtaining high-frequency and
spacial insights in various fields, including population structure, mobility and the socio-economic
impact of policy interventions. However, a lack of legal frameworks permitting access to data of
all providers, as seen in cases like Germany, constrain the quality of analysis [SBH22]. Accessing
only data of selected providers introduces biases, making FL an attractive solution to enhance
the representativeness by enabling the aggregation of insights from multiple major MNOs.

Thus, our third use case is based on private MNO data owned by the company umlaut SE14.
Different from the first two use cases, we had no direct access to the data, just as the aggregation
party in realistic FL settings. While this allows for practical insights, it also comes with constricted
resources in the private sector. Hence, the focus of this use case is more on practical engineering
issues of FL and less on optimal results.

The data set contains mobile communication network coverage data, including latency and
speed tests, each linked to the mobile LTE devices of individual users and a specific timestamp.
The data records are also associated with GPS coordinates, such that a daily “radius of action”
can be computed for each user. This radius describes how far a user has moved from their home
base within one day. The user home bases have also been computed on the available data – a
home base is defined as the place where most data records have been recorded. The ML task we
model in this use case is to estimate the daily radius of action for a user, given different LTE
metrics of one particular day (see below).

Data set The whole data set originally contains 286 329 137 data records. The following features
of the data set have been aggregated for each day and user: radius of action in meters, share of
data records with Wi-Fi connection and the variance and mean values for each of the following
LTE metrics: RSRQ, RSRP, RSSNR and RSSI. The date has been encoded into three numeric
features (calendar week, day of the week and month) and the boolean feature weekend.

Data preprocessing We set a specific time frame of six months and a geofence around the German
state of North Rhine-Westphalia. All other records are excluded – leaving 2 718 416 records in the
data set. Additionally, we apply a filtering strategy to clean our data: each user in the database
needs to have data for at least 20 different days (within the time span of six months) and 10
records on each of these days. Otherwise, all records of this user are discarded. After the second
filtering step, there are 1 508 102 data records in the data set. We scale each feature to a range
from 0 to 1 and then use for training, validating and testing our models.

60% of the data are used as training data, 20% are used as validation data and the remaining
20% as test data. For FL, we have divided the data set according to the mobile network operators
(MNOs) of the users. Since more than 99.6% of the data records are associated with three major
providers, the other 0.4% of the data records (belonging to 29 other MNOs) are eliminated from
the data set.

Setup We use two centralized learning benchmarks: a random forest regressor and a neural net-
work, which have both been subject to a hyperparameter search prior to their training. The
network architecture for both the centralized benchmark neural network and the FL training
process is the same: The first layer consists of 28 dense-neurons and the second layer consists of
14 dense-neurons, which lead to the single-neuron output layer. All dense layers except for the
output layer use the ReLU activation function. For FL, we use the SGD optimizer with a server
learning rate of 3.0, a client learning rate of 0.8 and a batch size of 2.

Results The benchmarks of the centralized learning regressors are R2 values of 0.158 (random
forest), 0.13 (neural network) and 0.13 (linear regression). For the neural network trained in the
FL scenario, we achieve a slightly lower R2 value of 0.114 (see Table 4).

14 umlaut website https://www.umlaut.com/, accessed on July 17, 2023
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Model R2 Rel. loss (%)

neural network 0.130 17.7

neural network (federated) 0.114 27.8

random forest 0.158 0.0

Table 4. Performance in the mobile radio simulation.

Discussion The reasons behind the weak performance of the benchmark models (R2 of 0.158
and 0.13) are not clear. The hyperparameters might not be optimal, since we were not able
to spend many resources on hyperparameter tuning due to time constraints of the data owner.
Another reason might be the that the modeled task (estimating the radius of action based on
LTE connection data) is inherently hard to learn. With an R2 of 0.114, we were able to reproduce
this performance in the FL setting.

Since the private data set in this use case has not left company premises, there are important
lessons to be learned from a practical perspective:

1. Even if the data set is not directly available during the model engineering process, it is crucial
to get basic insights on the features and statistical properties before starting the training.
Essential decisions, such as the type of model to be trained, can be made based on this.

2. A thorough hyperparameter optimization is needed to obtain useful results. It might take
a lot of time and computational resources to find hyperparameters which are suited for the
task.

3. Technical difficulties while creating the necessary APIs and setting up the chosen ML frame-
work at the FL clients can slow down the process even more. Without access to the database,
it might be hard to reproduce technical errors.

While all points mentioned above were encountered in the third simulation, there was only
one party who held all data. In real FL scenarios with multiple data holders, the process might
get much more complicated.

4 Key Observations

Our simulations lead to the following key observations:
Models trained via FL can reach a performance very close to models trained with centralized

ML approaches, as we have shown in all three use cases. While the performance gap itself is not
surprising (since the FL model has been exposed to the complete data set only indirectly), we
want to stress that without FL, many ML scenarios might not be possible due to privacy concerns,
trade secrets, or similar reasons. This is especially true for health care data, i.e., the domain of
our first simulation.

While the random forest regressor has demonstrated superior performance compared to other
centralized learning benchmarks in all three simulations, exploring the potential of tree-based
models within a FL context [Al-+23; YOW22; LWH20] could be a promising avenue for further
investigation. The improved interpretability and explainability over many other models, e.g.,
neural networks, is another advantage of tree-based models.

On the other hand, random forest regressors are not suitable if tasks get more complicated.
Also, their architecture, i.e., many decision trees which may be individually overfitted to parts of
the training data, can facilitate the extraction of sensitive information of the training data and
thus pose an additional privacy risk.

Choosing the right hyperparameters is crucial for any ML model. Since automatic HPO is still
an open problem for FL algorithms, (manually) finding the right settings can be a time-consuming
process. Developing a suitable framework for automated HPO for FL would be important future
work – although for official statistics, other issues might be more pressing at the moment (see
section 5).

In our third simulation (mobile radio data), we did not have access to the training and test
data set, just like in a real-world scenario. This means both HPO and technical debugging needed
to be performed remotely, without access to the data. Although this was already challenging, we
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believe that in scenarios with multiple data holders and possibly heterogeneous data sets, these
tasks will be even harder.

All FL simulations were performed on the machine which also had access to the complete data
set. In a real-world application, where each client runs on a distinct machine, other settings and
other frameworks might be more practical than TensorFlow Federated.

Last but not least, we want to emphasize that FL, despite its privacy-enhancing character,
may still be vulnerable to some ML privacy issues (see subsection 2.2). Hence, analyzing and
communicating these risks is an important step before an application is rolled out in practice.

5 Implications for Official Statistics

In this work, we have demonstrated how FL can enable NSOs to address pressing data needs in
fields that are relevant to policymakers and society. Official statistics are characterized by high
accuracy while underlying strict standards in confidentiality and privacy. Accuracy, explainability,
reproducibility, timeliness, and cost-effectiveness are essential quality dimensions for statistical
algorithms [Yun+22]. In this setting, our findings indicate that FL bears significant potential to
support statistical production and improve data quality.

We have shown that FL can empower NSOs to generate reliable models that accurately capture
global relations. In each of our use cases, the FL-generated models exhibited nearly identical
predictive performance compared to a model created by combining all available data. Each model
architecture that performed well on centralized or local data could be easily adapted to a FL
training process with a similar level of predictive performance only using distributed data.

If upcoming applications require to optimize an individual model for each participating party,
personalized FL can be used to generate potentially improved models tailored to individual clients.
This increases the interest to cooperate for each participating party, as it offers to enhance the
analytic potential for each client and the server. However, it is important to note that this
customization may come at the cost of global predictive performance.

FL provides the main advantage of not needing to exchange sensitive data (see subsection 2.2).
Additionally, there is no need to store or process the complete data set centralized in the NSOs.

NSOs can be empowered to appraise novel data sources sans the need for new legislation.
In cases where legislative changes prove impractical, FL provides a crucial pathway to assess
and prepare for regulations’ modernization. By showcasing the advantages and implications of
accessing new data sources before legal frameworks permit, FL not only significantly accelerates
and relieves statistics production but also occasionally enables it.

To ensure successful future implementations of FL in NSOs, it is essential to focus on fur-
ther advancements. Specifically, improvements in communication frequency are crucial to enable
high-speed and efficient exchanges. Our observations indicate that FL generally requires a greater
number of epochs (distributed across communication rounds) compared to centralized training
to achieve similar performance levels. In our use cases, even with small datasets, we found that
at least 50 rounds of communication were necessary. In real-world applications, this would result
in high delay and cost. Therefore, the development of infrastructure for seamless sending and
receiving ML models is necessary. Addressing this challenge, we discovered that the implemen-
tation of adaptive server optimization techniques reduced the training rounds and contributed
to training stability. As a result, we recommend the use of adaptive optimizers to help minimize
communication costs and enhance the efficiency of FL processes. By incorporating such adaptive
optimization methods, NSOs can optimize the performance and effectiveness of FL while reducing
the burden of communication overhead.

Additionally, it is crucial to provide partners with the necessary tools to update models ef-
fectively. This requires coordination of the server and expertise from all participating parties.
In practice, real-world applications of FL often involve the challenge of harmonizing client data
without directly accessing it. Achieving an optimized model architecture uniformly across all
clients also necessitates the knowledge and collaborative efforts of the clients themselves. Pro-
viding comprehensive tools and resources to partners enables them to actively contribute to the
model updating process while maintaining data privacy and security.

FL is evolving rapidly and both industry and research will continue to improve the field in the
coming years. The performance and efficiency of practical FL frameworks is expected to be further
optimized. Similarly, we expect the development of more usable PPML algorithms including the
ones based on Secure Multi-Party Computation (SMPC) and Homomorphic Encryption (HE) –
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allowing for provably secure collaborative ML. Although such PPML methods have been proposed
and frameworks exist, their performance today is often far from acceptable for many practical
applications. With more standardization and simpler, respectively more efficient, applications,
FL will become even more beneficial to official statistics.

In summary, FL should indeed be recognized as an important technology that can facilitate
the modernization of legal frameworks for official statistics. It enables NSOs to safely use publicly
relevant information that is not expected to be accessed by future legal frameworks, ultimately
enhancing the quality and relevance of official statistics. However, further development is still
required to fully realize the potential of FL in this context.

6 Conclusion

In scenarios where external partners are unwilling to share individual-level information but still
aim to analyze or disseminate global insights in their field of application, FL can help to overcome
these issues. We have shown across a range of three simulated use cases that FL can reach a very
similar performance to centralized learning algorithms. Hence, our results indicate that if classic
(centralized) ML techniques work sufficiently well, FL can possibly produce models with a similar
performance.

One of the next steps to transfer FL into the practice of official statistics could be to conduct
practical pilot studies. These could further showcase both the applicability and challenges of FL
beyond a simulated context. Another focus of future work in this area could be the analysis of
privacy risks in FL scenarios of official statistics and potential mitigation strategies. This would
be an important stepping stone in ensuring the privacy protection of involved parties, on top
of the privacy enhancement by using FL. Just as in countless other domains, we expect FL to
become a relevant technology for official statistics in the near future.
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