Skip to main content

Region Normalized Capsule Network Based Generative Adversarial Network for Non-parallel Voice Conversion

  • Conference paper
  • First Online:
Speech and Computer (SPECOM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14338))

Included in the following conference series:

Abstract

Voice conversion (VC) involves altering the vocal characteristics of a source speaker to resemble those of a target speaker while maintaining the same linguistic content. Recently, researchers have turned to deep generative models, particularly generative adversarial network (GAN) models, for VC studies due to their superior performance compared to statistical models. However, there is a noticeable disparity in naturalness between real speech samples and those generated by state-of-the-art (SOTA) VC models. This study introduces an enhanced GAN model for non-parallel VC, which employs mel-spectrograms as the speech feature. The enhanced GAN model incorporates a region normalization technique in the generator and a discriminator based on capsule networks (Caps-Net), to improve the quality of the generated speech samples. The proposed model is evaluated using the VCC 2018 and CMU Arctic datasets. The experimental outcomes demonstrate that the region normalization technique-based Caps-Net GAN (RNCapsGAN-VC) model outperforms the SOTA MaskCycleGAN-VC model in terms of both objective and subjective evaluations considering less training time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The generated speech samples and code implementation can be found at https://github.com/BlueBlaze6335/RNCapsGAN-VC.

References

  1. Abe, M., Nakamura, S., Shikano, K., Kuwabara, H.: Voice conversion through vector quantization. In: International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1988, vol. 1, pp. 655–658 (1988). https://doi.org/10.1109/ICASSP.1988.196671

  2. Chen, Y.N., Liu, L.J., Hu, Y.J., Jiang, Y., Ling, Z.H.: Improving recognition-synthesis based any-to-one voice conversion with cyclic training. In: ICASSP 2022, pp. 7007–7011 (2022). https://doi.org/10.1109/ICASSP43922.2022.9747140

  3. Coto-Jiménez, M., Goddard-Close, J., Martínez-Licona, F.M.: Quality assessment of HMM-based speech synthesis using acoustical vowel analysis. In: Ronzhin, A., Potapova, R., Delic, V. (eds.) SPECOM 2014. LNCS (LNAI), vol. 8773, pp. 368–375. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11581-8_46

    Chapter  Google Scholar 

  4. Dhar, S., Jana, N.D., Das, S.: An adaptive learning based generative adversarial network for one-to-one voice conversion. IEEE Trans. Artif. Intell. 4, 92–106 (2022). https://doi.org/10.1109/TAI.2022.3149858

    Article  Google Scholar 

  5. Du, H., Tian, X., Xie, L., Li, H.: Optimizing voice conversion network with cycle consistency loss of speaker identity. In: 2021 IEEE SLT, pp. 507–513 (2021). https://doi.org/10.1109/SLT48900.2021.9383567

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in NIPS, vol. 27. Curran Associates, Inc. (2014)

    Google Scholar 

  7. Jaiswal, A., AbdAlmageed, W., Wu, Y., Natarajan, P.: CapsuleGAN: generative adversarial capsule network. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 526–535. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_38

    Chapter  Google Scholar 

  8. Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard GAN. arXiv arXiv:1807.00734 (2019)

  9. Kaneko, T., Kameoka, H., Tanaka, K., Hojo, N.: CycleGAN-VC2: improved cycleGAN-based non-parallel voice conversion. In: ICASSP, vol. 2019, pp. 6820–6824 (2019)

    Google Scholar 

  10. Kaneko, T., Kameoka, H., Tanaka, K., Hojo, N.: MaskCycleGAN-VC: learning non-parallel voice conversion with filling in frames. In: ICASSP, pp. 5919–5923 (2021)

    Google Scholar 

  11. Kaneko, T., Kameoka, H.: CycleGAN-VC: non-parallel voice conversion using cycle-consistent adversarial networks. In: 2018, 26th EUSIPCO, pp. 2100–2104 (2018). https://doi.org/10.23919/EUSIPCO.2018.8553236

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Kishida, T., Nakashika, T.: Non-parallel voice conversion based on free-energy minimization of speaker-conditional restricted Boltzmann machine. In: 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 251–255 (2022). https://doi.org/10.23919/APSIPAASC55919.2022.9980151

  14. Kominek, J., Black, A.W.: The CMU arctic speech databases. In: SSW (2004)

    Google Scholar 

  15. Kumar, K., et al.: MelGAN: generative adversarial networks for conditional waveform synthesis. In: NeurIPS (2019)

    Google Scholar 

  16. Lorenzo-Trueba, J., et al.: The voice conversion challenge 2018: promoting development of parallel and nonparallel methods. In: Odyssey (2018)

    Google Scholar 

  17. Mazzia, V., Salvetti, F., Chiaberge, M.: Efficient-CapsNet: capsule network with self-attention routing. Sci. Rep. 11(1), 14634 (2021)

    Article  Google Scholar 

  18. Mazzia, V., Salvetti, F., Chiaberge, M.: Efficient-CapsNet: capsule network with self-attention routing. CoRR abs/2101.12491 (2021). https://arxiv.org/abs/2101.12491

  19. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. arXiv arXiv:1710.09829 (2017)

  20. Sisman, B., Yamagishi, J., King, S., Li, H.: An overview of voice conversion and its challenges: from statistical modeling to deep learning. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 132–157 (2021)

    Article  Google Scholar 

  21. Sun, L., Li, K., Wang, H., Kang, S., Meng, H.M.: Phonetic posteriorgrams for many-to-one voice conversion without parallel data training. In: 2016 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2016)

    Google Scholar 

  22. Uchida, H., Saito, D., Minematsu, N., Hirose, K.: Statistical acoustic-to-articulatory mapping unified with speaker normalization based on voice conversion. In: Proceedings of the INTERSPEECH 2015, pp. 588–592 (2015). https://doi.org/10.21437/Interspeech.2015-209

  23. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  24. Wu, J., Polyak, A., Taigman, Y., Fong, J., Agrawal, P., He, Q.: Multilingual text-to-speech training using cross language voice conversion and self-supervised learning of speech representations. In: ICASSP 2022, pp. 8017–8021 (2022). https://doi.org/10.1109/ICASSP43922.2022.9746282

  25. Yu, T., et al.: Region normalization for image inpainting. In: AAAI (2020)

    Google Scholar 

  26. Yun, Y.-S., Jung, J., Eun, S.: Voice conversion between synthesized bilingual voices using line spectral frequencies. In: Ronzhin, A., Potapova, R., Fakotakis, N. (eds.) SPECOM 2015. LNCS (LNAI), vol. 9319, pp. 463–471. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23132-7_57

    Chapter  Google Scholar 

  27. Zahariev, V., Azarov, E., Petrovsky, A.: Voice conversion for TTS systems with tuning on the target speaker based on GMM. In: Karpov, A., Potapova, R., Mporas, I. (eds.) SPECOM 2017. LNCS (LNAI), vol. 10458, pp. 788–798. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66429-3_79

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandipan Dhar or Nanda Dulal Jana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akhter, M.T., Banerjee, P., Dhar, S., Ghosh, S., Jana, N.D. (2023). Region Normalized Capsule Network Based Generative Adversarial Network for Non-parallel Voice Conversion. In: Karpov, A., Samudravijaya, K., Deepak, K.T., Hegde, R.M., Agrawal, S.S., Prasanna, S.R.M. (eds) Speech and Computer. SPECOM 2023. Lecture Notes in Computer Science(), vol 14338. Springer, Cham. https://doi.org/10.1007/978-3-031-48309-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48309-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48308-0

  • Online ISBN: 978-3-031-48309-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics