Skip to main content

Studying the Effect of Frame-Level Concatenation of GFCC and TS-MFCC Features on Zero-Shot Children’s ASR

  • Conference paper
  • First Online:
Speech and Computer (SPECOM 2023)

Abstract

The work presented in this paper aims at enhancing the recognition performance of zero-shot children’s speech recognition task through frame-level concatenation of two complementary front-end acoustic features. The acoustic features chosen are TANDEM-STRAIGHT-based Mel-frequency cepstral coefficients (TS-MFCC) and Gamma-tone frequency cepstral coefficients (GFCC). The GFCC model the cochlear response of the human auditory system. The MFCC features, on the other hand, model the human pitch perception. Therefore, the GFCC and TS-MFCC features capture the acoustic information differently and that too with very low correlation. Consequently, concatenation of TS-MFCC and GFCC feature vectors helps in modeling complementary and a wider range of relevant acoustic information. This, in turn, enhances the recognition performance significantly. The experimental evaluations presented in this paper show that a relative reduction of nearly \(12\%\) is achieved by feature concatenation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Batliner, A., et al.: The PF_STAR children’s speech corpus. In: Proceedings of Interspeech, pp. 2761–2764 (2005)

    Google Scholar 

  2. Cheng, O., Abdulla, W., Salcic, Z.: Performance evaluation of front-end algorithms for robust speech recognition. In: Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005, vol. 2, pp. 711–714 (2005). https://doi.org/10.1109/ISSPA.2005.1581037

  3. Damskägg, E.P., Välimäki, V.: Audio time stretching using fuzzy classification of spectral bins. Appl. Sci. 7(12), 1293 (2017). https://doi.org/10.3390/app7121293

    Article  Google Scholar 

  4. Gerosa, M., Giuliani, D., Brugnara, F.: Acoustic variability and automatic recognition of children’s speech. Speech Commun. 49(10–11), 847–860 (2007)

    Article  Google Scholar 

  5. Graves, A., Jaitly, N., Mohamed, A.R.: Hybrid speech recognition with deep bidirectional LSTM. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 273–278. IEEE (2013)

    Google Scholar 

  6. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649. IEEE (2013)

    Google Scholar 

  7. Hinton, G.E.: Deep neural networks for acoustic modeling in speech recognition. Signal Process. Maga. 29(6), 82–97 (2012)

    Article  Google Scholar 

  8. Kumar, V., Kumar, A., Shahnawazuddin, S.: Creating robust children’s ASR system in zero-resource condition through out-of-domain data augmentation. Circuits Syst. Signal Process. 41(4), 2205–2220 (2022). https://doi.org/10.1007/s00034-021-01885-5

    Article  Google Scholar 

  9. Kumar Kathania, H., Reddy Kadiri, S., Alku, P., Kurimo, M.: Study of formant modification for children ASR. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7429–7433 (2020). https://doi.org/10.1109/ICASSP40776.2020.9053334

  10. Lee, L., Rose, R.: A frequency warping approach to speaker normalization. IEEE Trans. Speech Audio Process. 6(1), 49–60 (1998)

    Article  Google Scholar 

  11. Lee, S., Potamianos, A., Narayanan, S.: Acoustics of children’s speech: developmental changes of temporal and spectral parameters. J. Acoust. Soc. Am. 105(3), 1455–1468 (1999)

    Article  Google Scholar 

  12. Makhoul, J.: Linear prediction: a tutorial review. Proc. IEEE 63(4), 561–580 (1975). https://doi.org/10.1109/PROC.1975.9792

    Article  Google Scholar 

  13. Morise, M., Takahashi, T., Kawahara, H., Irino, T.: Power spectrum estimation method for periodic signals virtually irrespective to time window position. Trans. IEICE 90(12), 3265–3267 (2007)

    Google Scholar 

  14. Patterson, R.: Auditory filters and excitation patterns as representations of frequency resolution. In: Frequency Selectivity in Hearing (1986)

    Google Scholar 

  15. Peddinti, V., Povey, D., Khudanpur, S.: A time delay neural network architecture for efficient modeling of long temporal contexts. In: Proceedings of Interspeech (2015)

    Google Scholar 

  16. Povey, D., et al.: The Kaldi Speech recognition toolkit. In: Proceedings of ASRU (2011)

    Google Scholar 

  17. Povey, D., et al.: Purely sequence-trained neural networks for ASR based on lattice-free MMI. In: Proceedings of Interspeech, pp. 2751–2755 (2016)

    Google Scholar 

  18. Robinson, T., Fransen, J., Pye, D., Foote, J., Renals, S.: WSJCAM0: a British English speech corpus for large vocabulary continuous speech recognition. In: Proceedings of ICASSP, vol. 1, pp. 81–84 (1995). https://doi.org/10.1109/ICASSP.1995.479278

  19. Russell, M., D’Arcy, S.: Challenges for computer recognition of children’s speech. In: Proceedings of Speech and Language Technologies in Education (SLaTE) (2007)

    Google Scholar 

  20. Sainath, T.N., Vinyals, O., Senior, A., Sak, H.: Convolutional, long short-term memory, fully connected deep neural networks. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4580–4584 (2015). https://doi.org/10.1109/ICASSP.2015.7178838

  21. Schluter, R., Bezrukov, I., Wagner, H., Ney, H.: Gammatone features and feature combination for large vocabulary speech recognition. In: Proceedings of ICASSP, vol. 4, pp. IV-649–IV-652 (2007). https://doi.org/10.1109/ICASSP.2007.366996

  22. Serizel, R., Giuliani, D.: Vocal tract length normalisation approaches to DNN-based children’s and adults’ speech recognition. In: Proceedings of Spoken Language Technology Workshop (SLT), pp. 135–140 (2014)

    Google Scholar 

  23. Shahnawazuddin, S., Adiga, N., Kathania, H.K., Sai, B.T.: Creating speaker independent ASR system through prosody modification based data augmentation. Pattern Recogn. Lett. 131, 213–218 (2020). https://doi.org/10.1016/j.patrec.2019.12.019

    Article  Google Scholar 

  24. Shahnawazuddin, S., Adiga, N., Kumar, K., Poddar, A., Ahmad, W.: Voice conversion based data augmentation to improve children’s speech recognition in limited data scenario. In: Proceedings of Interspeech, pp. 4382–4386 (2020). https://doi.org/10.21437/Interspeech.2020-1112

  25. Shahnawazuddin, S., Adiga, N., Kathania, H.K., Pradhan, G., Sinha, R.: Studying the role of pitch-adaptive spectral estimation and speaking-rate normalization in automatic speech recognition. Digital Signal Process. 79, 142–151 (2018)

    Article  MathSciNet  Google Scholar 

  26. Shahnawazuddin, S., Adiga, N., Kathania, H.K.: Effect of prosody modification on children’s ASR. IEEE Signal Process. Lett. 24(11), 1749–1753 (2017)

    Article  Google Scholar 

  27. Shao, Y., Jin, Z., Wang, D., Srinivasan, S.: An auditory-based feature for robust speech recognition. In: Proceedings of ICASSP, pp. 4625–4628 (2009). https://doi.org/10.1109/ICASSP.2009.4960661

  28. Shao, Y., Wang, D.: Robust speaker identification using auditory features and computational auditory scene analysis. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1589–1592 (2008). https://doi.org/10.1109/ICASSP.2008.4517928

  29. Valero, X., Alias, F.: Gammatone cepstral coefficients: biologically inspired features for non-speech audio classification. IEEE Trans. Multimedia 14(6), 1684–1689 (2012). https://doi.org/10.1109/TMM.2012.2199972

    Article  Google Scholar 

  30. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.: Phoneme recognition using time-delay neural networks. IEEE Trans. Acoust. Speech Signal Process. 37(3), 328–339 (1989). https://doi.org/10.1109/29.21701

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ankita, Shambhavi, Shahnawazuddin, S. (2023). Studying the Effect of Frame-Level Concatenation of GFCC and TS-MFCC Features on Zero-Shot Children’s ASR. In: Karpov, A., Samudravijaya, K., Deepak, K.T., Hegde, R.M., Agrawal, S.S., Prasanna, S.R.M. (eds) Speech and Computer. SPECOM 2023. Lecture Notes in Computer Science(), vol 14339. Springer, Cham. https://doi.org/10.1007/978-3-031-48312-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48312-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48311-0

  • Online ISBN: 978-3-031-48312-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics