Skip to main content

Deep Image Analysis for Microalgae Identification

  • Conference paper
  • First Online:
Information Integration and Web Intelligence (iiWAS 2023)

Abstract

The current management of microalgae cultivation requires manual microscopic examination in order to identify desired and competing species, as well as predators. In this study, we trained and tested a transfer learning model modified from EfficientNetV2 B3 model on 434 and 161 prospectively acquired images of the preferred Nanno-chloropsis sp microalgae and competitor Spirulina, respectively, and achieved >98% classification for both species on tenfold cross-validation. The model was further enhanced with gradient-weighted class activation mapping, which allowed visualisation of regions of the input images that were relevant to the classification, thereby improving its explainability. In this paper, we demonstrate that a simple deep transfer learning model can help microalgae farmers to identify and manage microalgae species. The application could enable the widespread adoption of microalgae by more farmers as an enviroment-friendly, drought-proof, and high-productive crop that can be grown on non-arable land and use waste water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Data Availability Statement:

Data are available on request to the Corresponding Author.

Conflicts of Interest:

The authors declare no conflict of interest.

Disclaimer/Publisher’s Note:

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

References

  1. Buchholz, C.M., Krause, G., Buck, B.H.: Seaweed and man. In: Wiencke, C., Bischof, K. (eds.) Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization, pp. 471–493. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28451-9_22

    Chapter  Google Scholar 

  2. Merz, C., Main, K.: Microalgae (diatom) production—the aquaculture and biofuel nexus. In: Oceans’14 MTS/IEEE Conference Proceedings – IEEE Xplore, St. John's, NL, Canada (2014). https://doi.org/10.1109/OCEANS.2014.7003242

  3. Mac Monagail, M., Cornish, L., Morrison, L., Araújo, R., Critchley, A.T.: Sustainable harvesting of wild seaweed resources. Eur. J. Phycol. 52, 371–390 (2017). https://doi.org/10.1080/09670262.2017.1365273

    Article  Google Scholar 

  4. Marsham, S., Scott, G.W., Tobin, M.L.: Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem. 100, 1331–1336 (2007). https://doi.org/10.1016/j.foodchem.2005.11.029

    Article  Google Scholar 

  5. Cai, J., et al.: Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. FAO Fisheries and Aquaculture Circular (1229) (2021). https://doi.org/10.4060/cb5670en

  6. Griffiths, M.J., Harrison, S.T.L.: Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21, 493–507 (2009). https://doi.org/10.1007/s10811-008-9392-7

  7. Andrade, D.S., et al.: Microalgae: cultivation, biotechnological, environmental, and agricultural applications. In: Maddela, N.R., García, L.C., Cruzatty, S.C. (eds.) Advances in the Domain of Environmental Biotechnology: Microbiological Developments in Industries, Wastewater Treatment and Agriculture, pp. 635–701. Springer Singapore, Singapore (2021). https://doi.org/10.1007/978-981-15-8999-7_23

  8. Benedetti, M., Vecchi, V., Barera, S., Dall’Osto, L.: Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microb. Cell Fact. 17 (2018). https://doi.org/10.1186/s12934-018-1019-3

  9. McGinn, P.J., Dickinson, K.E., Bhatti, S., Frigon, J.-C., Guiot, S.R., O’Leary, S.J.B.: Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth. Res. 109, 231–247 (2011). https://doi.org/10.1007/s11120-011-9638-0

    Article  Google Scholar 

  10. Caporgno, M.P., Mathys, A.: Trends in microalgae incorporation into innovative food products with potential health benefits. Front. Nutr. 5 (2018). https://doi.org/10.3389/fnut.2018.00058

  11. Goondiwindi Regional Council. Communication of decision. mail@grc.qld.gov.au - Goondiwindi Regional Council. 27 November 2018 https://www.grc.qld.gov.au/downloads/file/1028/17-48g-decision-notice

  12. Renuka, N., Guldhe, A., Prasanna, R., Singh, P., Bux, F.: Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnol. Adv. 36, 1255–1273 (2018). https://doi.org/10.1016/j.biotechadv.2018.04.004

    Article  Google Scholar 

  13. Deore, P., Beardall, J., Noronha, S.: A perspective on the current status of approaches for early detection of microalgal grazing. J. Appl. Phycol. 32, 3723–3733 (2020). https://doi.org/10.1007/s10811-020-02241-x

    Article  Google Scholar 

  14. He, Y., Zeng, H., Fan, Y., Ji, S., Wu, J.: Application of deep learning in integrated pest management: a real-time system for detection and diagnosis of oilseed rape pests. Mob. Inf. Syst. 2019, 1–14 (2019). https://doi.org/10.1155/2019/4570808

    Article  Google Scholar 

  15. Liu, L., et al.: PestNet: an end-to-end deep learning approach for large-scale multi-class pest detection and classification. IEEE Access 7, 45301–45312 (2019). https://doi.org/10.1109/access.2019.2909522

    Article  Google Scholar 

  16. Wang, K., et al.: How does the Internet of Things (IoT) help in microalgae biorefinery? Biotechnol. Adv. 54, 107819 (2022). https://doi.org/10.1016/j.biotechadv.2021.107819

    Article  Google Scholar 

  17. Xu, W., et al.: Identification of paralytic shellfish toxin-producing microalgae using machine learning and deep learning methods. J. Ocean. Limnol. 40, 2202–2217 (2022). https://doi.org/10.1007/s00343-022-1312-1

    Article  Google Scholar 

  18. Austrade, Australian Government. Australia: shaping the future of food and agriculture. https://www.austrade.gov.au/agriculture. Accessed 11 Feb 2022

  19. Tan, M., Le, Q.: EfficientNetV2: smaller models and faster training. In Proceedings of the 38th International Conference on Machine Learning/Proceedings of Machine Learning Research. PMLR 139, 14 December 2021. https://proceedings.mlr.press/v139/tan21a.html

  20. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-CAM: Why did you say that?. arXiv preprint arXiv:1611.07450. 2016 Nov 22

  21. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128, 336–359 (2020). https://doi.org/10.1007/s11263-019-01228-7

    Article  Google Scholar 

  22. Zhang, Z.: Improved adam optimizer for deep neural networks. In: IEEE/ACM 26th International Symposium on Quality of Service (IWQoS) (2018). https://doi.org/10.1109/IWQoS.2018.8624183

  23. Luo, J., et al.: Confocal hyperspectral microscopic imager for the detection and classification of individual microalgae. Opt. Express 29, 37281 (2021). https://doi.org/10.1364/OE.438253

    Article  Google Scholar 

  24. Heidari Baladehi, M., et al.: Culture-free identification and metabolic profiling of microalgal single cells via ensemble learning of ramanomes. Anal. Chem. 93, 8872–8880 (2021). https://doi.org/10.1021/acs.analchem.1c01015

    Article  Google Scholar 

  25. Mirasbekov, Y., et al.: Semi-automated classification of colonial Microcystis by FlowCAM imaging flow cytometry in mesocosm experiment reveals high heterogeneity during seasonal bloom. Sci. Rep. 11 (2021). https://doi.org/10.1038/s41598-021-88661-2

  26. Wang, Y., Ju, P., Wang, S., Su, J., Zhai, W., Wu, C.: Identification of living and dead microalgae cells with digital holography and verified in the East China Sea. Mar. Pollut. Bull. 163, 111927 (2021). https://doi.org/10.1016/j.marpolbul.2020.111927

    Article  Google Scholar 

  27. Memmolo, P., et al.: Learning diatoms classification from a dry test slide by holographic microscopy. Sensors 20, 6353 (2020). https://doi.org/10.3390/s20216353

  28. Xu, Z., Jiang, Y., Ji, J., Forsberg, E., Li, Y., He, S.: Classification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learning. Opt. Express 28, 30686 (2020). https://doi.org/10.1364/OE.406036

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge AlgaePharm, Goondiwindi, Australia for the supply of all images that were used in the research.

Funding

This research received no external funding.

Institutional Review Board Statement:

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, J.S., R.A., A.W.; methodology, R.A.; software, O.D.L, L.H.W.; validation, J.S., R.A., E.S, R.C.D.; formal analysis, R.A., E.S., R.C.D., O.S.L, L.H.W; investigation, J.S., R.A, O.S.L, E.S, R.C.D., A.W., L.H.W.; resources, E.R., L.H.W.; data curation, E.R., E.S, R.C.D.; writing—original draft preparation, J.S., R.A., E.S., R.C.D.; writing—review and editing, J.S., R.A., E.S, R.C.D., A.W.; visualisation, J.S., R.A.; supervision and project administration, J.S., R.A.; data acquisition, E.R. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jeffrey Soar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soar, J. et al. (2023). Deep Image Analysis for Microalgae Identification. In: Delir Haghighi, P., et al. Information Integration and Web Intelligence. iiWAS 2023. Lecture Notes in Computer Science, vol 14416. Springer, Cham. https://doi.org/10.1007/978-3-031-48316-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48316-5_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48315-8

  • Online ISBN: 978-3-031-48316-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics