Skip to main content

Provenance-Aware Data Integration and Summarization Querying for Knowledge Graphs

  • Conference paper
  • First Online:
Information Integration and Web Intelligence (iiWAS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14416))

Abstract

Knowledge graphs are an increasingly popular choice for integrating heterogeneous data that have been collected independently from multiple sources. In many scenarios, including research and industry collaborations, the source data can be provided at different granularities, that is at more detailed and independently at more summarized levels, each with its own ontology. In such scenarios it is often important to find justifications at a more detailed data level for the data at a more summarized level, that is to find correct provenance of the existing summarized data. To address this previously unexplored challenge, in this paper we present a framework for enabling provenance-aware knowledge-graph integration and querying for such hierarchical data. We introduce the proposed domain-independent algorithms, outline their implementation, and report experimental results for two real-life application domains. The findings suggest that our proposed framework can be effective and efficient in enabling provenance-aware summarization querying across hierarchical knowledge-graph data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://neo4j.com.

  2. 2.

    http://robokopkg.renci.org/browser/.

  3. 3.

    A serotype is a distinct variation within a species of bacteria.

References

  1. Ahlstrøm, K., Hose, K., Pedersen, T.B.: Towards answering provenance-enabled SPARQL queries over RDF data cubes. In: Li, Y.-F., et al. (eds.) JIST 2016. LNCS, vol. 10055, pp. 186–203. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50112-3_14

    Chapter  Google Scholar 

  2. Amsterdamer, Y., Deutch, D., et al.: Provenance for aggregate queries. In: PODS, pp. 153–164 (2011)

    Google Scholar 

  3. Avgoustaki, A., Flouris, G., Fundulaki, I., Plexousakis, D.: Provenance management for evolving RDF datasets. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 575–592. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34129-3_35

    Chapter  Google Scholar 

  4. Barceló, P., Pérez, J., et al.: Schema mappings and data exchange for graph databases. In: ICDT, pp. 189–200 (2013)

    Google Scholar 

  5. Buneman, P., Khanna, S., et al.: Why and where: a characterization of data provenance. In: ICDT, vol. 1973, pp. 316–330 (2001)

    Google Scholar 

  6. Collarana, D., Galkin, M., et al.: Semantic data integration for knowledge graph construction at query time. In: ICSC, pp. 109–116 (2017)

    Google Scholar 

  7. Galárraga, L., Ahlstrøm, K., Hose, K., Pedersen, T.B.: Answering provenance-aware queries on RDF data cubes under memory budgets. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 547–565. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_32

    Chapter  Google Scholar 

  8. Gaur, G., Bhattacharya, A., et al.: How and why is an answer (still) correct? Maintaining provenance in dynamic knowledge graphs. In: CIKM, pp. 405–414 (2020)

    Google Scholar 

  9. Green, T.J., Karvounarakis, G., et al.: Provenance semirings. In: PODS, pp. 31–40 (2007)

    Google Scholar 

  10. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)

    Article  Google Scholar 

  11. Guarino, N., Oberle, D., Staab, S.: What is an ontology? Handbook on Ontologies, pp. 1–17 (2009)

    Google Scholar 

  12. Hao, X., Ji, Z., et al.: Construction and application of a knowledge graph. Rem. Sens. 13(13), 2511 (2021)

    Article  Google Scholar 

  13. Hayes, P.J., Patel-Schneider, P.F.: RDF 1.1 Semantics. W3C Recommendation (2014)

    Google Scholar 

  14. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl. Eng. Rev. 18(1), 1–31 (2003)

    Article  Google Scholar 

  15. Kieler, B.: Semantic data integration across different scales: automatic learning generalization rules. ISPRS Arch. 37, 685–690 (2008)

    Google Scholar 

  16. Knap, T., Michelfeit, J., et al.: Linked open data aggregation: conflict resolution and aggregate quality. In: COMPSAC, pp. 106–111 (2012)

    Google Scholar 

  17. Mohammadi, S., Shiri, N.: ARDBS: efficient processing of provenance queries over annotated relations. In: DEXA, pp. 263–269 (2022)

    Google Scholar 

  18. Morton, K., Wang, P., et al.: ROBOKOP: an abstraction layer and user interface for knowledge graphs to support question answering. Bioinformatics 35(24), 5382–5384 (2019)

    Article  Google Scholar 

  19. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD Rec. 33(4), 65–70 (2004)

    Article  Google Scholar 

  20. Sasaki, Y., et al.: The truth of the f-measure. Teach. Tutor Mater. 1(5), 1–5 (2007)

    Google Scholar 

  21. Sikos, L.F., Philp, D.: Provenance-aware knowledge representation: a survey of data models and contextualized knowledge graphs. DSE 5, 293–316 (2020)

    Google Scholar 

  22. Smith, J.M., Smith, D.C.: Database abstractions: aggregation. Commun. ACM 20(6), 405–413 (1977)

    Article  Google Scholar 

  23. Vukotic, A., Watt, N., et al.: Neo4j in action, vol. 22. Manning Shelter Island (2015)

    Google Scholar 

  24. Webber, J.: A programmatic introduction to Neo4j. In: SPLASH, pp. 217–218 (2012)

    Google Scholar 

  25. Xiao, G., Hovland, D., Bilidas, D., Rezk, M., Giese, M., Calvanese, D.: Efficient ontology-based data integration with canonical IRIs. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 697–713. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_45

    Chapter  Google Scholar 

Download references

Acknowledgment

This work has been supported by the National Science Foundation under Grant No. CBET-2019435.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Yu Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, PY., Ao, J., Schatz, K., Gulyuk, A.V., Yingling, Y.G., Chirkova, R. (2023). Provenance-Aware Data Integration and Summarization Querying for Knowledge Graphs. In: Delir Haghighi, P., et al. Information Integration and Web Intelligence. iiWAS 2023. Lecture Notes in Computer Science, vol 14416. Springer, Cham. https://doi.org/10.1007/978-3-031-48316-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48316-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48315-8

  • Online ISBN: 978-3-031-48316-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics