Skip to main content

ImputAnom: Anomaly Detection Framework Using Imputation Methods for Univariate Time Series

  • Conference paper
  • First Online:
Information Integration and Web Intelligence (iiWAS 2023)

Abstract

Anomaly detection plays a crucial role in various domains such as cybersecurity, fraud detection, and industrial asset condition monitoring. In these fields, identifying abnormal patterns or outliers is paramount for the business they support. This paper presents a new framework that utilizes imputation methods to effectively identify anomalies. To evaluate the performance of the proposed framework, experiments were conducted on different datasets that contain anomalies from different domains. Experimental results demonstrate the effectiveness of the framework in helping to detect anomalies. It provides improvements between 8.17% and 165.21% for all datasets. Experimental results also confirm the effectiveness of the proposed framework and its potential to be applied in real-world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/numenta/NAB/tree/master/data/realKnownCause.

References

  1. Alghushairy, O., Alsini, R., Soule, T., Ma, X.: A review of local outlier factor algorithms for outlier detection in big data streams. Big Data Cogn. Comput. 5(1), 1 (2021). https://doi.org/10.3390/bdcc5010001, https://www.mdpi.com/2504-2289/5/1/1

  2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–58 (2009). https://doi.org/10.1145/1541880.1541882

    Article  Google Scholar 

  3. Duchi, J., Mackey, L., Wauthier, F.: Anomaly detection for asynchronous and incomplete data (2008). https://web.stanford.edu/lmackey/papers/anomaly-cs262a08.pdf, Advanced Topics in Computer Systems (UC Berkeley CS 262A, E. Brewer)

  4. Fatyanosa, T.N., Firdausanti, N.A., Soto, L.F.J., Mendonça, I., Prayoga, P.H.N., Aritsugi, M.: Conducting vessel data imputation method selection based on dataset characteristics. IOP Conf. Ser.: Earth Environ. Sci. 1198(1), 012017 (2023). https://doi.org/10.1088/1755-1315/1198/1/012017

    Article  Google Scholar 

  5. Jensen, D.R., Ramirez, D.E.: Use of hotelling’s \(T^2\): outlier diagnostics in mixtures. Int. J. Stat. Probab. 6(6), 24–34 (2017). https://doi.org/10.5539/ijsp.v6n6p24

    Article  Google Scholar 

  6. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008). https://doi.org/10.1109/ICDM.2008.17

  7. Murti, D.M.P., Pujianto, U., Wibawa, A.P., Akbar, M.I.: K-nearest neighbor (K-NN) based missing data imputation. In: 2019 5th International Conference on Science in Information Technology (ICSITech), pp. 83–88 (2019). https://doi.org/10.1109/ICSITech46713.2019.8987530

  8. Thudumu, S., Branch, P., Jin, J., Singh, J.J.: A comprehensive survey of anomaly detection techniques for high dimensional big data. J. Big Data 7(1), 1–30 (2020). https://doi.org/10.1186/s40537-020-00320-x

    Article  Google Scholar 

  9. Vangipuram, R., Gunupudi, R.K., Puligadda, V.K., Vinjamuri, J.: A machine learning approach for imputation and anomaly detection in IoT environment. Expert Syst. 37(5), e12556 (2020). https://doi.org/10.1111/exsy.12556, https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.12556

  10. Wilson, S.V.: miceforest: fast, memory efficient imputation with LightGBM (2020). https://github.com/AnotherSamWilson/miceforest

  11. Yamanishi, K., Takeuchi, J.: A unifying framework for detecting outliers and change points from non-stationary time series data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 676–681. KDD 2002, Association for Computing Machinery, New York, NY, USA (2002). https://doi.org/10.1145/775047.775148

  12. Yang, K., Kpotufe, S., Feamster, N.: An efficient one-class SVM for anomaly detection in the internet of things. arXiv:2104.11146 (2021)

  13. Yoon, J., Jordon, J., van der Schaar, M.: GAIN: missing data imputation using generative adversarial nets. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, vol. 80, pp. 5689–5698. PMLR (2018). https://proceedings.mlr.press/v80/yoon18a.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Mendonça .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fatyanosa, T.N., Data, M., Firdausanti, N.A., Prayoga, P.H.N., Mendonça, I., Aritsugi, M. (2023). ImputAnom: Anomaly Detection Framework Using Imputation Methods for Univariate Time Series. In: Delir Haghighi, P., et al. Information Integration and Web Intelligence. iiWAS 2023. Lecture Notes in Computer Science, vol 14416. Springer, Cham. https://doi.org/10.1007/978-3-031-48316-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48316-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48315-8

  • Online ISBN: 978-3-031-48316-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics