Skip to main content

The Power of Good Old-Fashioned AI for Urban Traffic Control

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2023)

Abstract

The current worldwide increasing trend in urbanisation is aggravating urban traffic congestion’s social, economic, and health burdens. The introduction of new means of transport, such as Connected Autonomous Vehicles, and the rise of Artificial Intelligence, is enabling a paradigm shift in urban traffic management and control from existing reactive to proactive traffic control: proactive control paradigms can preemptively address issues, mitigating the negative impact on mobility.

In this paper we provide an overview of the work done in the area by the Huddersfield AI for Urban Traffic Management and Control research team.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.ai4utmc.info/.

References

  1. Abduljabbar, R., Dia, H., Liyanage, S., Bagloee, S.A.: Applications of artificial intelligence in transport: an overview. Sustainability 11(1), 189 (2019)

    Article  Google Scholar 

  2. Khan, A., et al.: Environmental pollution is associated with increased risk of psychiatric disorders in the US and Denmark. PLOS Biol. 17, e03000353 (2019)

    Article  Google Scholar 

  3. Chang, K., et al.: Traffic-related air pollutants increase the risk for age-related macular degeneration. J. Invest. Med. 67(7), 1076–1081 (2019)

    Article  Google Scholar 

  4. Antoniou, G., et al.: Enabling the use of a planning agent for urban traffic management via enriched and integrated urban data. Transp. Res. Part C: Emerging Technol. 98, 284–297 (2019)

    Article  Google Scholar 

  5. Bhatnagar, S., Guo, R., McCabe, K., McCluskey, T.L., Scala, E., Vallati, M.: Leveraging artificial intelligence for simulating traffic signal strategies. In: 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), pp. 607–612. IEEE (2022)

    Google Scholar 

  6. Bhatnagar, S., Mund, S., Scala, E., McCabe, K., Vallati, M.: On-the-fly knowledge acquisition for automated planning applications: challenges and lessons learnt. In: Proceedings of ICAART (2022)

    Google Scholar 

  7. Cardellini, M., Dodaro, C., Maratea, M., Vallati, M.: A framework for risk-aware routing of connected vehicles via artificial intelligence. In: 2023 IEEE International Conference on Intelligent Transportation Systems (ITSC) (2023)

    Google Scholar 

  8. Cardellini, M., Maratea, M., Vallati, M., Boleto, G., Oneto, L.: In-station train dispatching: a PDDL+ planning approach. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 31, pp. 450–458 (2021)

    Google Scholar 

  9. Chrpa, L., Magazzeni, D., McCabe, K., McCluskey, T.L., Vallati, M.: Automated planning for urban traffic control: strategic vehicle routing to respect air quality limitations. Intelligenza Artificiale 10(2), 113–128 (2016)

    Article  Google Scholar 

  10. Chrpa, L., Vallati, M.: On the exploitation of automated planning for efficient decision making in road traffic accident management. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6607–6612. IEEE (2016)

    Google Scholar 

  11. Chrpa, L., Vallati, M., Parkinson, S.: Exploiting automated planning for efficient centralized vehicle routing and mitigating congestion in urban road networks. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 191–194 (2019)

    Google Scholar 

  12. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. J. Artif. Intell. Res. 27, 235–297 (2006)

    Article  MATH  Google Scholar 

  13. Franco, S., Lindsay, A., Vallati, M., McCluskey, T.L.: An innovative heuristic for planning-based urban traffic control. In: Shi, Y., et al. (eds.) ICCS 2018. LNCS, vol. 10860, pp. 181–193. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93698-7_14

    Chapter  Google Scholar 

  14. Franco, S., Vallati, M., Lindsay, A., McCluskey, T.L.: Improving planning performance in PDDL+ domains via automated predicate reformulation. In: Rodrigues, J.M.F., et al. (eds.) ICCS 2019. LNCS, vol. 11540, pp. 491–498. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22750-0_42

    Chapter  Google Scholar 

  15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, August 15–19, 1988, vol. 2, pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  16. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Comput. 9(3/4), 365–386 (1991)

    Article  MATH  Google Scholar 

  17. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  18. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning and Acting. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  19. Haugeland, J.: Artificial Intelligence: The Very Idea. MIT press, Cambridge (1989)

    Book  Google Scholar 

  20. McCluskey, T., Vallati, M.: Embedding automated planning within urban traffic management operations. In: Proceedings of the International Conference on Automated Planning and Scheduling, vol. 27, pp. 391–399 (2017)

    Google Scholar 

  21. McCluskey, T.L., Vaquero, T.S., Vallati, M.: Engineering knowledge for automated planning: Towards a notion of quality. In: Proceedings of the Knowledge Capture Conference, K-CAP, pp. 14:1–14:8 (2017)

    Google Scholar 

  22. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Percassi, F., Bhatnagar, S., Guo, R., McCabe, K., McCluskey, L., Vallati, M.: An efficient heuristic for AI-based urban traffic control. In: 8th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS) (2023)

    Google Scholar 

  24. Scala, E., McCluskey, T.L., Vallati, M.: Verification of numeric planning problems through domain dynamic consistency. In: Dovier, A., Montanari, A., Orlandini, A. (eds.) AIxIA 2022. LNCS, vol. 13796, pp. 171–183. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-27181-6_12

    Chapter  Google Scholar 

  25. Scala, E., Vallati, M.: Effective grounding for hybrid planning problems represented in PDDL+. Knowl. Eng. Rev. 36, e9 (2021)

    Article  Google Scholar 

  26. Švadlenka, M., Chrpa, L.: Towards a framework for intelligent urban traffic routing. In: The International FLAIRS Conference Proceedings, vol. 36 (2023)

    Google Scholar 

  27. Švadlenka, M., Chrpa, L., Vallati, M.: Improving the scalability of automated planning-based vehicle routing via smart routes identification (2023)

    Google Scholar 

  28. Taale, H., Fransen, W., Dibbits, J.: The second assessment of the SCOOT system in Nijmegen. In: IEEE Road Transport Information and Control. No. 21–23 (1998)

    Google Scholar 

  29. Vallati, M., Chrpa, L.: A principled analysis of the interrelation between vehicular communication and reasoning capabilities of autonomous vehicles. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3761–3766. IEEE (2018)

    Google Scholar 

  30. Vallati, M., Chrpa, L.: Effective real-time urban traffic routing: an automated planning approach. In: 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 1–6. IEEE (2021)

    Google Scholar 

  31. Vallati, M., Chrpa, L.: In Defence of good old-fashioned artificial intelligence approaches in intelligent transportation systems. In: 2023 IEEE International Conference on Intelligent Transportation Systems (ITSC) (2023)

    Google Scholar 

  32. Vallati, M., Magazzeni, D., De Schutter, B., Chrpa, L., McCluskey, T.: Efficient macroscopic urban traffic models for reducing congestion: A PDDL+ planning approach. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  33. Vallati, M., Scala, E., Chrpa, L.: A hybrid automated planning approach for urban real-time routing of connected vehicles. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 3821–3826. IEEE (2021)

    Google Scholar 

Download references

Acknowledgements

Mauro Vallati is supported by a UKRI Future Leaders Fellowship [grant number MR/T041196/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Vallati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vallati, M. (2023). The Power of Good Old-Fashioned AI for Urban Traffic Control. In: Antoniou, G., et al. Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2023. Communications in Computer and Information Science, vol 1980. Springer, Cham. https://doi.org/10.1007/978-3-031-48325-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48325-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48324-0

  • Online ISBN: 978-3-031-48325-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics