Skip to main content

Design and Implementation of Didactic Process Based on Simulation

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2023)

Abstract

The problem of designing didactic processes has not been solved to this day, although some specific issues are considered. The article presents a generalized approach model based on the reference ADDIE model including the organisational level to the design and implementation of the didactic process. The model uses Bloom’s taxonomy and Gardner’s Theory of Multiple Intelligences. The model has been modified towards a dynamic design oriented on quality, efficiency and adaptive learning. A competency-based decomposition is used. The lowest level of decomposition is the activities level where the information flows as well as the learning and forgetting are taken into account. The competences-objectives-activities-data linking is discussed. The level of activities is represented in the form of an electrical-like network. The network represents differential equations describing dynamic learning and forgetting as well as the structure and information flows of the didactic process. The element models can be easily extended. The networks can be simulated and optimized. The results can be used during the design process. The simulation result as well as the structure of network equations enables inference. The article presents the results of simulations of some aspects of didactic processes including scheduling and sequencing, gap effect, workload, predicting achievements and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, W.C.: Overview and evolution of the ADDIE training system. Adv. Dev. Hum. Resour. 8(4), 430–441 (2006)

    Article  Google Scholar 

  2. Ambrose, S.A., Bridges, M.W., DiPietro, M., Lovett, M.C., Norman, M.K.: How Learning Works: Seven Research-Based Principles for Smart Teaching. Wiley, New York (2010)

    Google Scholar 

  3. Anderson, L.W., et al.: A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives, Abridged Edition, vol. 5(1). Longman, White Plains (2001)

    Google Scholar 

  4. Bjork, R.A., Allen, T.W.: The spacing effect: consolidation or differential encoding? J. Verbal Learn. Verbal Behav. 9(5), 567–572 (1970)

    Article  Google Scholar 

  5. Bloom, B.: Taxonomy of Educational Objectives: The Classification of Educational Goals: Handbook I: Cognitive Domain. Longmans, Green (1956)

    Google Scholar 

  6. Caena, F., Punie, Y.: Developing a European framework for the personal, social & learning to learn key competence (LifEComp). In: Punie, Y. (ed.) Literature Review & Analysis of Frameworks. Publications Office of the European Union, Luxembourg (2019)

    Google Scholar 

  7. Care, C.: Technology for Modelling: Electrical Analogies, Engineering Practice, and the Development of Analogue Computing. History of Computing. Springer, London (2010). https://books.google.pl/books?id=bkbBZcR7DG4C

  8. Carpenter, S.K., Cepeda, N.J., Rohrer, D., Kang, S.H., Pashler, H.: Using spacing to enhance diverse forms of learning: review of recent research and implications for instruction. Educ. Psychol. Rev. 24(3), 369–378 (2012)

    Article  Google Scholar 

  9. Cepeda, N.J., Vul, E., Rohrer, D., Wixted, J.T., Pashler, H.: Spacing effects in learning: a temporal ridgeline of optimal retention. Psychol. Sci. 19(11), 1095–1102 (2008)

    Article  Google Scholar 

  10. Child, S.F., Shaw, S.D.: A purpose-led approach towards the development of competency frameworks. J. Furth. High. Educ. 44(8), 1143–1156 (2020)

    Article  Google Scholar 

  11. Dick, W., Carey, L., Carey, J.O.: The Systematic Design of Instruction. Pearson, London (2005)

    Google Scholar 

  12. Dudai, Y.: The neurobiology of consolidations, or how stable is the engram? Annu. Rev. Psychol. 55, 51–86 (2004)

    Article  Google Scholar 

  13. Dudai, Y.: Reconsolidation: the advantage of being refocused. Curr. Opin. Neurobiolog. 16, 174–178 (2006)

    Article  Google Scholar 

  14. Ebbinghaus, H.: Memory: a contribution to experimental psychology (1913). https://web.archive.org/web/20051218083239/. http://psy.ed.asu.edu:80/~classics/Ebbinghaus/index.htm. Original work published in 1885

  15. Ericsson, K.A., Krampe, R.T., Tesch-Römer, C.: The role of deliberate practice in the acquisition of expert performance. Psychol. Rev. 100(3), 363 (1993)

    Article  Google Scholar 

  16. Gagné, R.M., Wager, W.W., Golas, K.C., Keller, J.M., Russell, J.D.: Principles of Instructional Design (2005)

    Google Scholar 

  17. Garcia, K.L., Ozogul, G.: The evolution of the instructional system development model in the United States Air Force. TechTrends 1–11 (2023)

    Google Scholar 

  18. Gardner, H.: Frames of Mind. Basic Books, New York (1983)

    Google Scholar 

  19. Gardner, H.: Multiple Intelligences: The Theory in Practice. A Reader (1993)

    Google Scholar 

  20. Gardner, H.E.: Frames of Mind: The Theory of Multiple Intelligences. Basic Books (2011)

    Google Scholar 

  21. Halamish, V., Bjork, R.A.: When does testing enhance retention? A distribution-based interpretation of retrieval as a memory modifier. J. Exp. Psychol. Learn. Mem. Cogn. 37(4), 801 (2011)

    Article  Google Scholar 

  22. Holton, E.F., III, Swanson, R.A.: Foundations of Human Resource Development. ReadHowYouWant.com (2011)

  23. Kafai, Y.: Constructionism. In: Sawyer, K. (ed.) The Cambridge Handbook of the Learning Sciences. Cambridge University Press, Washington University (2006)

    Google Scholar 

  24. Kang, S.H.: Spaced repetition promotes efficient and effective learning: policy implications for instruction. Policy Insights Behav. Brain Sci. 3(1), 12–19 (2016)

    Article  Google Scholar 

  25. Kornell, N.: Optimising learning using flashcards: spacing is more effective than cramming. Appl. Cogn. Psychol. Off. J. Soc. Appl. Res. Memory Cogn. 23(9), 1297–1317 (2009)

    Google Scholar 

  26. Liew, A.: Understanding data, information, knowledge and their inter-relationships. J. Knowl. Manag. Pract. 8(2), 1–16 (2007)

    Google Scholar 

  27. Molenda, M., Pershing, J., Reigeluth, C.: Designing instructional systems. In: Craig, R.L. (ed.) The ASTD Training and Development Handbook: a Guide to Human Resource Development (1996)

    Google Scholar 

  28. Murre, J., Dros, J.: Replication and analysis of Ebbinghaus’ forgetting curve. PLOS ONE 10(7), 1–23 (2015). https://doi.org/10.1371/journal.pone.0120644

    Article  Google Scholar 

  29. Panadero, M., Pardo, A., Panadero, J., Andreas, M.: A mathematical model for reusing student learning skills across didactical units. In: 32nd ASEE/IEEE Frontiers in Education Conference, November 2002

    Google Scholar 

  30. Peltokorpi, J., Jaber, M.Y.: Interference-adjusted power learning curve model with forgetting. Int. J. Ind. Ergon. 88, 103257 (2022)

    Article  MATH  Google Scholar 

  31. Plaskura, P.: Assessing the quality of the didactic process on the base of its monitoring with the use of ICT. Педагогiчнi науки: теорiя, iсторiя, iнновацiЙнi технологiï (Pedagog. Sci. Theory Hist. Innov. Technol.) 76(2), 185–196 (2018). https://doi.org/10.24139/2312-5993/2018.02/185-196

  32. Plaskura, P.: Dero 4 simulator as a didactical tool. Aparatura Badawcza i Dydaktyczna 23(1), 44–51 (2018). http://abid.cobrabid.pl

  33. Plaskura, P.: The use of ICT in improving the effectiveness of the didactical process. Педагогiчнi науки: теорiя, iсторiя, iнновацiЙнi технологiï (Pedagog. Sci. Theory Hist. Innov. Technol.) 17, 152–159 (2018). http://dspace.pnpu.edu.ua/handle/123456789/9739

  34. Plaskura, P.: Wykorzystanie technologii informacyjnych do modelowania i monitorowania jakości procesu dydaktycznego (The use of information technology for modelling and monitoring the quality of the didactical process). Wydawnictwo Uniwersytetu Jana Kochanowskiego, Piotrków Trybunalski, December 2018

    Google Scholar 

  35. Plaskura, P.: Modelling of forgetting curves in educational e-environment. Inf. Technol. Learn. Tools 71(3), 1–11 (2019)

    Google Scholar 

  36. Plaskura, P.: Monitorowanie jakości procesu dydaktycznego z wykorzystaniem ICT (Monitoring the quality of the didactical process with the use of ICT). In: Leshchenko, M., Zamecka-Zalas, O., Kiełtyk-Zaborowska, I., Jarocka-Piesik, J. (eds.) Globalne i regionalne konteksty w edukacji wczesnoszkolnej, pp. 151–164. Wydawnictwo Uniwersytetu Jana Kochanowskiego w Kielcach Filia w Piotrkowie Trybunalskim (2019)

    Google Scholar 

  37. Plaskura, P.: The use of analogy to simplify the mathematical description of the didactical process. In: Ermolayev, V., Mallet, F., Yakovyna, V., Mayr, H.C., Spivakovsky, A. (eds.) ICTERI 2019. CCIS, vol. 1175, pp. 136–160. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39459-2_7

    Chapter  Google Scholar 

  38. Rao, K., Edelen-Smith, P., Wailehua, C.U.: Universal design for online courses: applying principles to pedagogy. Open Learn. J. Open Dist. e-Learn. 30(1), 35–52 (2015). https://doi.org/10.1080/02680513.2014.991300

  39. Reigeluth, C.M.: Instructional Design Theories and Models: An Overview of Their Current Status. Routledge, Amsterdam (1983)

    Book  Google Scholar 

  40. Rohrer, D., Taylor, K.: The effects of overlearning and distributed practice on the retention of mathematics knowledge. Appl. Cogn. Psychol. Off. J. Soc. Appl. Res. Memory Cogn. 20(9), 1209–1224 (2006)

    Google Scholar 

  41. Rothkopf, E.Z., Billington, M.J.: Goal-guided learning from text: inferring a descriptive processing model from inspection times and eye movements. J. Educ. Psychol. 71(3), 310 (1979)

    Article  Google Scholar 

  42. Rule, A.C., Lord, L.H.: Activities for differentiated instruction addressing all levels of bloom’s taxonomy and eight multiple intelligences (2003)

    Google Scholar 

  43. Rycroft-Smith, L., Boylan, M.: Summary of evidence for elements of teaching related to mastery in mathematics. Expresso 16 (2019). https://www.cambridgemaths.org/Images/espresso_16_mastery_in_mathematics.pdf

  44. Sisti, H.M., Glass, A.L., Shors, T.J.: Neurogenesis and the spacing effect: learning over time enhances memory and the survival of new neurons. Learn. Memory 14(5), 368–375 (2007)

    Article  Google Scholar 

  45. Smith, P.L., Ragan, T.J.: Instructional Design. Wiley, New York (2004)

    Google Scholar 

  46. Tomczyk, L.: ICT in schools and non-formal education in Poland. Challenges of digital literacy development, modernisation of education system and digital inclusion through new media from the perspective of experts from business, education and NGO sectors. Memorias y Boletines de la Universidad del Azuay, 116–145 (2020)

    Google Scholar 

  47. Vitello, S., Greatorex, J., Shaw, S.: What is competence? Learning and assessment. Research report, Cambridge University Press & Assessment, A Shared Interpretation of Competence to Support Teaching (2021)

    Google Scholar 

  48. Vlach, H.A.: The spacing effect in children’s generalization of knowledge: allowing children time to forget promotes their ability to learn. Child Dev. Perspect. 8(3), 163–168 (2014)

    Article  Google Scholar 

  49. Vlach, H.A., Sandhofer, C.M.: Distributing learning over time: the spacing effect in children’s acquisition and generalization of science concepts. Child Dev. 83(4), 1137–1144 (2012)

    Article  Google Scholar 

  50. Wickelgren, W.: Single-trace fragility theory of memory dynamics. Mem. Cognit. 2, 775–780 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Plaskura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plaskura, P. (2023). Design and Implementation of Didactic Process Based on Simulation. In: Antoniou, G., et al. Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2023. Communications in Computer and Information Science, vol 1980. Springer, Cham. https://doi.org/10.1007/978-3-031-48325-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48325-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48324-0

  • Online ISBN: 978-3-031-48325-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics