Skip to main content

Helicopters Turboshaft Engines Parameters Identification Using Neural Network Technologies Based on the Kalman Filter

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2023)

Abstract

The work is a continuation of the research devoted to the development of a multidimensional Kalman filter connected at the output of the built-in helicopter’s turboshaft engines mathematical dynamic model to improve the accuracy of helicopters turboshaft engines parameters identification and achieve high quality automatic control. The main difference is the use of radial basis functions neural networks, in which the multivariate Kalman filter is a training algorithm. The work illustrates well-known mathematical expressions underlying of optimal multidimensional filtering algorithms. The methods of mathematical modeling in the Matlab environment tested the proposed algorithms. The simulation results showed that the use of neural networks trained by the multidimensional Kalman matrix filter as part of the model of helicopters turboshaft engines built into the automatic control system allows achieving high indicators of the accuracy of identifying the parameters of helicopters turboshaft engines automatic control system – up to 0.9975, then in practical analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeng, J., Cheng, Y.: An ensemble learning-based remaining useful life prediction method for aircraft turbine engine. IFAC-PapersOnLine 53(3), 48–53 (2020). https://doi.org/10.1016/j.ifacol.2020.11.00

    Article  Google Scholar 

  2. Vladov, S., Shmelov, Y., Yakovliev, R.: Helicopters aircraft engines self-organizing neural network automatic control system. In: The Fifth International Workshop on Computer Modeling and Intelligent Systems (CMIS-2022), 12 May 2022, Zaporizhzhia, Ukraine. CEUR Workshop Proceedings, vol. 3137, pp. 28–47 (2022). https://doi.org/10.32782/cmis/3137-3

  3. Yildirim, M.T., Kurt, B.: Aircraft gas turbine engine health monitoring system by real flight data. Int. J. Aerosp. Eng. 1–12 (2018). https://doi.org/10.1155/2018/9570873. https://www.hindawi.com/journals/ijae/2018/9570873/

  4. Pang, S., Li, Q., Ni, B.: Improved nonlinear MPC for aircraft gas turbine engine based on semi-alternative optimization strategy. Aerosp. Sci. Technol. 118, 106983 (2021). https://doi.org/10.1016/j.ast.2021.106983

    Article  Google Scholar 

  5. Shen, Y., Khorasani, K.: Hybrid multi-mode machine learning-based fault diagnosis strategies with application to aircraft gas turbine engines. Neural Netw. 130, 126–142 (2020). https://doi.org/10.1016/j.neunet.2020.07.001

    Article  Google Scholar 

  6. Filippone, A., Zhang, M., Bojdo, N.: Validation of an integrated simulation model for aircraft noise and engine emissions. Aerosp. Sci. Technol. 89, 370–381 (2019). https://doi.org/10.1016/j.ast.2019.04.008

    Article  Google Scholar 

  7. Cai, C., Wang, Y., Fang, J., Chen, H., Zheng, Q., Zhang, H.: Multiple aspects to flight mission performances improvement of commercial turbofan engine via variable geometry adjustment. Energy 263(A), 125693 (2023). https://doi.org/10.1016/j.energy.2022.125693

  8. de Voogt, A., St. Amour, E.: Safety of twin-engine helicopters: risks and operational specificity. Saf. Sci. 136, 105169 (2021). https://doi.org/10.1016/j.ssci.2021.105169

  9. Li, Y., Xuan, Y.: Thermal characteristics of helicopters based on integrated fuselage structure/engine model. Int. J. Heat Mass Transf. 115(A), 102–114 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.038

  10. Sheng, H., et al.: Research on dynamic modeling and performance analysis of helicopter turboshaft engine’s start-up process. Aerosp. Sci. Technol. 106, 106097 (2020). https://doi.org/10.1016/j.ast.2020.106097

    Article  Google Scholar 

  11. Infante, V., Freitas, M.: Failure analysis of compressor blades of a helicopter engine. Eng. Fail. Anal. 104, 67–74 (2019). https://doi.org/10.1016/j.engfailanal.2019.05.024

    Article  Google Scholar 

  12. Chen, Y.-Z., Tsoutsanis, E., Wang, C., Gou, L.-F.: A time-series turbofan engine successive fault diagnosis under both steady-state and dynamic conditions. Energy 263(D), 125848 (2023). https://doi.org/10.1016/j.energy.2022.125848

  13. Andoga, R., Fozo, L., Schrotter, M., Ceskovic, M.: Intelligent thermal imaging-based diagnostics of turbojet engines. Appl. Sci. 9(11), 2253 (2019). https://doi.org/10.3390/app9112253

    Article  Google Scholar 

  14. Kuznetsova, T., Likhacheva, Y., Gubarev, E., Yakushev, A.: The identification of gas turbine engine parameters by the multidimensional Kalman filter. Electr. Eng. Inf. Technol. Control Syst. 10, 114–126 (2014)

    Google Scholar 

  15. Vladov, S., Shmelov, Y., Yakovliev, R.: Modified helicopters turboshaft engines neural network on-board automatic control system using the adaptive control method. In: ITTAP’2022: 2nd International Workshop on Information Technologies: Theoretical and Applied Problems, 22–24 November 2022, Ternopil, Ukraine. CEUR Workshop Proceedings, vol. 3309, pp. 205–229 (2022). (ISSN 1613-0073)

    Google Scholar 

  16. Karvonen, T., Bonnabel, S., Moulines, E., Sarkka, S.: On stability of a class of filters for nonlinear stochastic systems. SIAM J. Control Optimiz. 58(4), 2023–2049 (2020). https://doi.org/10.1137/19M1285974

    Article  MathSciNet  MATH  Google Scholar 

  17. Jia, C., Hu, J.: Variance-constrained filtering for nonlinear systems with randomly occurring quantized measurements: recursive scheme and boundedness analysis. Adv. Differ. Equ. 2019, 53 (2019). https://doi.org/10.1186/s13662-019-2000-0. https://d-nb.info/1180488768/34

  18. Long, Z., Bai, M., Ren, M., Liu, J., Yu, D.: Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network. Energy 1, 127068 (2023). https://doi.org/10.1016/j.energy.2023.127068

    Article  Google Scholar 

  19. Kellermann, C., Ostermann, J.: Estimation of unknown system states based on an adaptive neural network and Kalman filter. Proc. CIRP 99, 656–661 (2021). https://doi.org/10.1016/j.procir.2021.03.089

    Article  Google Scholar 

  20. Togni, S., Nikolaidis, T., Sampath, S.: A combined technique of Kalman filter, artificial neural network and fuzzy logic for gas turbines and signal fault isolation. Chin. J. Aeronaut. 34(2), 124–135 (2021). https://doi.org/10.1016/j.cja.2020.04.015

    Article  Google Scholar 

  21. Shmelov, Y., Vladov, S., Klimova, Y., Kirukhina, M.: Expert system for identification of the technical state of the aircraft engine TV3-117 in flight modes. In: System Analysis & Intelligent Computing: IEEE First International Conference on System Analysis & Intelligent Computing (SAIC), 08–12 October, pp. 77–82 (2018). https://doi.org/10.1109/SAIC.2018.8516864

  22. Chernodub, A.: Training of neuroemulators with use of pseudoregularization for model reference adaptive neurocontrol. Artif. Intell. 4, 602–614 (2012)

    Google Scholar 

  23. Gyamfi, K.S., Brusey, J., Gaura, E.: Differential radial basis function network for sequence modelling. Expert Syst. Appl. 189, 115982 (2022). https://doi.org/10.1016/j.eswa.2021.115982

    Article  Google Scholar 

  24. Sideratos, G., Hatziargyriou, N.D.: A distributed memory RBF-based model for variable generation forecasting. Int. J. Electr. Power Energy Syst. 120, 106041 (2020). https://doi.org/10.1016/j.ijepes.2020.106041

    Article  Google Scholar 

  25. Vladov, S., Shmelov, Y., Yakovliev, R., Petchenko, M., Drozdova, S.: Neural network method for helicopters turboshaft engines working process parameters identification at flight modes. In: 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine, 20–22 October 2022, pp. 604–609 (2022). https://doi.org/10.1109/MEES58014.2022.10005670

  26. Puchkov, A., Dli, M., Lobaneva, E., Vasilkova, M.: Predicting an object state based on applying the Kalman filter and deep neural networks. Softw. Syst. 32(3), 368–376 (2019). https://doi.org/10.15827/0236-235X.127.368-376

  27. Vladov, S., Shmelov, Y., Yakovliev, R.: Modified method of identification potential defects in helicopters turboshaft engines units based on prediction its operational status. In: 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine, 20–22 October 2022, pp. 556–561 (2022). https://doi.org/10.1109/MEES58014.2022.10005605

  28. Vladov, S., Shmelov, Y., Yakovliev, R. Methodology for control of helicopters aircraft engines technical state in flight modes using neural networks. In: The Fifth International Workshop on Computer Modeling and Intelligent Systems (CMIS-2022), 12 May 2022, Zaporizhzhia, Ukraine, CEUR Workshop Proceedings, vol. 3137, pp. 108–125 (2022). https://doi.org/10.32782/cmis/3137-10). (ISSN 1613-0073)

  29. Yoo, H.-M., Park, M.-K., Park, B.-G., Lee, J.-H.: Effect of layer-specific synaptic retention characteristics on the accuracy of deep neural networks. Solid-State Electron. 200, 108570 (2023). https://doi.org/10.1016/j.sse.2022.108570

    Article  Google Scholar 

  30. Saneifard, R., Jafarian, A., Ghalami, N., Measoomy Nia, S.: Extended artificial neural networks approach for solving two-dimensional fractional-order Volterra-type integro-differential equations. Inf. Sci. 612, 887–897 (2022). https://doi.org/10.1016/j.ins.2022.09.017

    Article  Google Scholar 

  31. Shamlitskiy, Y., Popov, A., Saidov, N., Moiseeva, K.: Transport stream optimization based on neural network learning algorithms. Transp. Res. Proc. 68, 417–425 (2023). https://doi.org/10.1016/j.trpro.2023.02.056

    Article  Google Scholar 

  32. Wei, W., Chuan, J.: A combination forecasting method of grey neural network based on genetic algorithm. Proc. CIRP 109, 191–196 (2022). https://doi.org/10.1016/j.procir.2022.05.235

    Article  Google Scholar 

  33. Hu, X., Wei, X., Gao, Y., Liu, H., Zhu, L.: Variational expectation maximization attention broad learning systems. Inf. Sci. 608, 597–612 (2022). https://doi.org/10.1016/j.ins.2022.06.074

    Article  Google Scholar 

  34. Pattnaik, M., Badoni, M., Tatte, Y.: Application of Gaussian-sequential-probabilistic-inference concept based Kalman filter for accurate estimation of state of charge of battery. J. Energy Storage 54, 105244 (2022). https://doi.org/10.1016/j.est.2022.105244

    Article  Google Scholar 

  35. Lu, F., Gao, T., Huang, J., Qiu, X.: Nonlinear Kalman filters for aircraft engine gas path health estimation with measurement uncertainty. Aerosp. Sci. Technol. 76, 126–140 (2018). https://doi.org/10.1016/j.ast.2018.01.024

    Article  Google Scholar 

  36. Cordeiro, R.A., Azinheira, J.R., Moutinho, A.: Actuation failure detection in fixed-wing aircraft combining a pair of two-stage Kalman filters. IFAC-PapersOnLine 53(2), 7144–7749 (2020). https://doi.org/10.1016/j.ifacol.2020.12.825

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhii Vladov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vladov, S., Shmelov, Y., Yakovliev, R., Petchenko, M. (2023). Helicopters Turboshaft Engines Parameters Identification Using Neural Network Technologies Based on the Kalman Filter. In: Antoniou, G., et al. Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2023. Communications in Computer and Information Science, vol 1980. Springer, Cham. https://doi.org/10.1007/978-3-031-48325-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48325-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48324-0

  • Online ISBN: 978-3-031-48325-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics