Skip to main content

Energy-Efficient and Communication-Aware Resource Allocation in Container-Based Cloud with Group Genetic Algorithm

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14419))

Included in the following conference series:

  • 1436 Accesses

Abstract

Microservice is a new architecture for application development that makes applications more flexible to deploy, extend and update compared to monolithic architectures. As container-based clouds rapidly gained popularity in recent years, more microservices are deployed in containers and composed of complex and elaborated applications for users. The challenges of microservices deployment in a container-based clouds arise from two-level resource allocations to not only minimize the overall energy consumption but also to reduce the communication data volume between microservices in physical networks to improve application performance. However, there is still a lack of research that considers these two important challenges jointly during microservice composition and resource allocation. Motivated by this, in this work, we propose a genetic algorithm-based algorithm, namely EC-GGA, to not only minimize the energy consumption in cloud data centers but also minimize the communication data volume of applications. We compare EC-GGA with several state-of-the-art algorithms to demonstrate the effectiveness of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://aws.amazon.com/ec2/pricing/on-demand/.

References

  1. Docker swarm. https://docs.docker.com/engine/swarm/

  2. Akindele, T., Tan, B., Mei, Y., Ma, H.: Hybrid grouping genetic algorithm for large-scale two-level resource allocation of containers in the cloud. In: Long, G., Yu, X., Wang, S. (eds.) AI 2022. LNCS (LNAI), vol. 13151, pp. 519–530. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97546-3_42

    Chapter  Google Scholar 

  3. Benson, T., Anand, A., Akella, A., Zhang, M.: Understanding data center traffic characteristics. ACM SIGCOMM Comput. Commun. Rev. 40(1), 92–99 (2010)

    Article  Google Scholar 

  4. Chen, J., et al.: Joint affinity aware grouping and virtual machine placement. Microprocess. Microsyst. 52, 365–380 (2017)

    Article  Google Scholar 

  5. Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption modeling: a survey. IEEE Commun. Surv. Tutorials 18(1), 732–794 (2015)

    Article  Google Scholar 

  6. Gajera, V., et al.: An effective multi-objective task scheduling algorithm using min-max normalization in cloud computing. In: 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), pp. 812–816. IEEE (2016)

    Google Scholar 

  7. Hu, Y., de Laat, C., Zhao, Z.: Optimizing service placement for microservice architecture in clouds. Appl. Sci. 9(21), 4663 (2019)

    Article  Google Scholar 

  8. Hu, Y., Zhou, H., de Laat, C., Zhao, Z.: Concurrent container scheduling on heterogeneous clusters with multi-resource constraints. Futur. Gener. Comput. Syst. 102, 562–573 (2020)

    Article  Google Scholar 

  9. Kaaouache, M.A., Bouamama, S.: Solving bin packing problem with a hybrid genetic algorithm for VM placement in cloud. Procedia Comput. Sci. 60, 1061–1069 (2015)

    Article  Google Scholar 

  10. Nadareishvili, I., Mitra, R., McLarty, M., Amundsen, M.: Microservice architecture: aligning principles, practices, and culture. O’Reilly Media, Inc. (2016)

    Google Scholar 

  11. Narantuya, J., Ha, T., Bae, J., Lim, H.: Dependency analysis based approach for virtual machine placement in software-defined data center. Appl. Sci. 9(16), 3223 (2019)

    Article  Google Scholar 

  12. Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R.: A framework and algorithm for energy efficient container consolidation in cloud data centers. In: IEEE International Conference on Data Science and Data Intensive Systems, pp. 368–375. IEEE (2015)

    Google Scholar 

  13. Rong, H., Zhang, H., Xiao, S., Li, C., Hu, C.: Optimizing energy consumption for data centers. Renew. Sustain. Energy Rev. 58, 674–691 (2016)

    Article  Google Scholar 

  14. Sampaio, A.R., Rubin, J., Beschastnikh, I., Rosa, N.S.: Improving microservice-based applications with runtime placement adaptation. J. Internet Serv. Appl. 10(1), 1–30 (2019)

    Article  Google Scholar 

  15. Sengupta, J., Singh, P., Suri, P.K.: Energy aware next fit allocation approach for placement of VMs in cloud computing environment. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) FICC 2020. AISC, vol. 1130, pp. 436–453. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39442-4_33

    Chapter  Google Scholar 

  16. Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained service deployment for composite applications in multi-cloud environment. IEEE Trans. Parallel Distrib. Syst. 31(8), 1954–1969 (2020)

    Article  Google Scholar 

  17. Tan, B., Ma, H., Mei, Y.: Novel genetic algorithm with dual chromosome representation for resource allocation in container-based clouds. In: IEEE International Conference on Cloud Computing (CLOUD), pp. 452–456. IEEE (2019)

    Google Scholar 

  18. Tan, B., Ma, H., Mei, Y.: A group genetic algorithm for resource allocation in container-based clouds. In: Paquete, L., Zarges, C. (eds.) EvoCOP 2020. LNCS, vol. 12102, pp. 180–196. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43680-3_12

    Chapter  Google Scholar 

  19. Wang, C., Ma, H., Chen, G., Huang, V., Yu, Y., Christopher, K.: Energy-aware dynamic resource allocation in container-based clouds via cooperative coevolution genetic programming. In: International Conference on the Applications of Evolutionary Computation (Part of EvoStar), pp. 539–555. Springer (2023). https://doi.org/10.1007/978-3-031-30229-9_35

  20. Zhang, R., Zhong, A., Dong, B., Tian, F., Li, R.: Container-VM-PM architecture: a novel architecture for docker container placement. In: Luo, M., Zhang, L.-J. (eds.) CLOUD 2018. LNCS, vol. 10967, pp. 128–140. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94295-7_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengxin Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, Z., Ma, H., Chen, G., Hartmann, S. (2023). Energy-Efficient and Communication-Aware Resource Allocation in Container-Based Cloud with Group Genetic Algorithm. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds) Service-Oriented Computing. ICSOC 2023. Lecture Notes in Computer Science, vol 14419. Springer, Cham. https://doi.org/10.1007/978-3-031-48421-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48421-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48420-9

  • Online ISBN: 978-3-031-48421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics