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Abstract. Serverless computing allows developers to break their code
into small components, known as functions, which are automatically
managed by a service provider. Being lightweight and modular, server-
less functions have been increasingly employed in edge computing, where
quick responses and adaptability are key to meeting strict latency re-
quirements. In particular, edge nodes are intrinsically resource-constrained,
and efficient resource allocation strategies are crucial for optimizing their
usage. Different approaches exist in the literature, but they often over-
look the dependencies among functions, that is, how and when functions
invoke other functions, obtaining suboptimal results.

This paper presents NEPTUNE™, a dependency-aware resource (CPU
cores) allocation solution for serverless functions deployed at the edge.
The approach extends NEPTUNE, an existing framework for managing
edge infrastructures, with a new theoretical model and control algorithm
that take dependencies into account function. We evaluated NEPTUNE™
by using three applications and it is able to allocate up to 42% fewer cores
compared to NEPTUNE.

Keywords: serverless - edge computing - function dependencies - re-
source allocation

1 Introduction

Complex applications are increasingly built as sets of independent components,
such as microservices [4] to foster agility and speed in both development and
runtime management. This high degree of modularization allows for indepen-
dent management, but complicates communication among components and af-
fects their performance. For this reason, understanding the logical dependencies
among components is essential for the efficient management of the system [10].

Serverless computing is arising as a new instance of such highly modular-
ized architectural paradigms [I6]. It promotes the creation of applications as a
collection of “small” functions [I7], which are usually executed in lightweight con-
tainers to ensure their fast and efficient management [6]. Serverless functions are
designed to be independently developed, deployed, and scaled automatically by
a service provider. This high degree of flexibility allows for fast re-configuration
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and scaling in response to changes in the system workload and contributes to
overall system agility.

Given these characteristics, serverless functions have been increasingly em-
ployed in edge computing [16]. In this context, applications are often constrained
by strict latency requirements. The inherent agility and ability to rapidly scale
individual components allow serverless platforms to quickly adapt to workload
fluctuations, facilitate the prompt execution of functions, and allow the system
to meet latency requirements more effectively [2I]. However, it is essential to
acknowledge that serverless functions can depend on other functions, which can
significantly impact their performance and management [9].

In the last few years, serverless computing has been widely studied as means
to improve the management of applications deployed on edge infrastructures [12].
Some approaches tackle the intelligent placement of edge functions on resource-
limited nodes [6I8]; others focus on optimizing resource allocation [I9]. Yet, these
approaches often overlook function dependencies, a crucial factor for perfor-
mance modeling [22].

This paper introduces NEPTUNE™, a solution that focuses on resource al-
location for serverless functions deployed at the edge. NEPTUNE™ extends an
existing edge framework, called NEPTUNE [2], which allows for the smart place-
ment and allocation of serverless functions but does not consider function depen-
dencies. NEPTUNET extends the theoretical model of NEPTUNE by proposing
i) a new formalization of the problem that encodes function dependencies as
an annotated Direct Acyclic Graph (DAG), and ii) a novel control algorithm
that exploits the function dependency graph to save resources. A comprehensive
empirical evaluation compared NEPTUNE and NEPTUNE™ by means of three
benchmark applications. Obtained results show that NEPTUNE™ allocates up
to 42% fewer cores than NEPTUNE, with comparable performance in terms of
response times.

The rest of the paper is organized as follows. Section [2]introduces NEPTUNE
and highlights its limitations. Section[3]describes our solution, along with the new
problem formulation and control algorithm. Section[d] presents the evaluation and
discusses the results. Section [f] surveys the related work, and Section [6] concludes
the paper.

2 NEPTUNE in a nutshell

Serverless computing is the driver of a significant paradigm shift that frees devel-
opers from infrastructure management [17], and some approaches [227] explored
this paradigm for deploying and managing applications in edge infrastructures.
To the best of our knowledge, only NEPTUNE [2] provides a comprehensive and
holistic management approach that considers network partitioning, placement,
request routing, and the combined dynamic allocation of memory, CPUs, and
GPUs.

NEPTUNE requires the code of the function to deploy, a threshold (ser-
vice level agreement or SLA) on its response time, and the identification of the
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Fig. 1: Example application with function dependencies.

memory required for proper execution. The management exploits a three-level
hierarchy: topology, community, and node. The global network topology is split
into a set of independent communities. Each community is composed of edge
nodes (or servers) that are close to each other, that is, their network inter-delays
are smaller than a set threshold. Each community is managed by a dedicated
controller that takes into account user mobility, workload provenance, and the
memory requirements for each function. This controller exploits an optimization
problem based on Mixed-Integer Programming to calculate the best placement of
function instances and a set of routing policies that minimize network latency.
Function placement implies deciding how many function instances are needed
for each used function and the best node to host each of them. Since each node
cannot always host all the instances and handle all the incoming workload, NEP-
TUNE uses routing policies to compute the request fraction to be routed to other
nodes. The same formulation is used to first handle the workload that can be ac-
celerated through GPUs, and then, the remaining workload is assigned to CPUs
exclusively.

Whereas GPUs and memory are entirely managed by the community con-
troller, the node level controller oversees the proper execution of requests on
CPUs, making sure that each function instance is provisioned with enough cores
to complete executions within the given SLA. A lightweight Proportional Integer
(PI) controller is attached to each function instance f; with the goal of keeping
the response time close to a given set point:

sp;i = ax SLA; (1)

where « is a scaling parameter (0 < o < 1). The more « is close to 1, the
more the response time is kept close to SLA, with a risk for potential viola-
tions. Conversely, if « is significantly lower than 1, the controller ensures better
performance, but more resources are needed. Therefore, « represents a tunable
trade-off between performance and resource utilization.
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2.1 Limitations

NEPTUNE does not consider function dependencies, which can lead to inefficient
resource allocation. Let us consider, for example, the application in Figure[I] This
application consists of five functions, f1, fa, f3, f4, f5, with their dependencies
outlined in a directed acyclic graph (DAG): f; depends on f> and f5, while fo
depends on f4 and f5.

If we suppose that function f5 is supposed to manage a workload spike, its
response time suddenly increases, and its local node level controller is prompted
to augment allocated cores. While f5’s controller stabilizes the situation and
brings the response time closer to the set point, the response times of f5, and
then of fi, also grow, given their dependency on f5.

The inefficiency of NEPTUNE lies in the behavior of the controllers associ-
ated with fy and fi’s: higher response times, due to the slow responses from fs,
imply increasing the cores allocated to f; and fy. This reaction is redundant, as
the issue does not stem from either fy or fi, but the bottleneck is f5. Instead
of allocating extra cores to fo and fi, these resources would have been better
utilized to speed up f5.

This is why NEPTUNE must be improved/extended to address this limita-
tion and fix redundant allocations: CPU cores must be allocated efficiently even
in the presence of dependent serverless functions.

3 Solution

NEPTUNE™ extends NEPTUNE with a new theoretical model and control algo-
rithm to efficiently allocate resources to serverless functions with dependencies.
In particular, NEPTUNET aims to improve the allocation of CPUs cores at the
node level in light of the limitations described in Section [2.] while it inherits
from NEPTUNE its placement strategy that minimizes network delays and the
management of GPUs and memory.

3.1 Theoretical Model

Let F be a set of serverless functions whose dependencies are encoded as a DAG
where nodes are the function instances and edges are the invocations between
functions. This DAG is assumed to be either manually defined by the user or
automatically generated utilizing network or log analysis techniques [13].

We do not consider invocation cycles (i.e., we employed DAGs for modeling
dependencies), in line with the recommendations against their use, as suggested
by Fontana et al. [I1]. A cycle denotes a situation where a function indirectly
relies on its own output to commence its execution, forming an untenable loop.
This could lead to an endless cycle of executions or deadlock scenarios that are
unmanageable cost-wise on real serverless platforms [20].

NEPTUNE™ considers the response time 7t; of a function f; € F as follows:

rt; = lrt; +ert; (2)
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Fig. 2: Example of annotated DAG.

where [rt; is the local response time spent for executing its code, that is, the set
of instructions that implements the function without considering external calls
to other functions, and ert; is the external response time, that is, the time spent
for invoking other functions. The external response time depends on the type of
dependency between f; and another function f;. First, the invocation could be
either sequential or parallel. In the former case, the invocation is synchronous,
that is, other invocations must wait for its completion. The latter allows it to
be executed in parallel with some other invocations. More formally, each edge
in the DAG is annotated with an identifier id; ;. If two edges E;; and E; p,
which represent the invocations of f; and fy, respectively, in f;, have different
identifiers, the invocations are executed sequentially. If they are annotated with
the same value, they are called in parallelﬂ Moreover, each edge is also annotated
with a multiplier m; ;, which denotes how many times such invocation is executed
within the same function call [22]. Figure [2] shows an example of an annotated
DAG with 5 functions. Function fi sequentially calls function fo (i.e., idi 2 is
unique) two times during its execution (i.e., mj; o = 2) —for example, at the
beginning and at the end of the computation. Moreover, f1 invokes f3 and f4 in
parallel (i.e., idy 3 = idy 4 = 2) each only once (i.e., mi 3 = my 4 = 1). Finally,
f2 invokes sequentially f5 (once) and fg (two times) since the edge identifiers
are unique. The external response time is defined as follows:

ert; = Zmi)j *rt; + Z max(m; j *rt;, Vj € P) (3)
Jjes pepP

where S is the set of functions that f; invokes sequentially, P is the set of the
subsets of functions that f; invokes in parallel, and P represents each subset
(i.e., a group of parallel invocations). In essence, the external response time is
equal to the sum of all sequential invocations plus the sum of all the longest

! Note that our approach allows a function f; to invoke another function f; both in
sequential and parallel mode by having multiple, properly annotated, edges between
i and j (as in multigraphs [1]). Herein, we did not detail such edge cases to keep our
formalization as simple as possible.
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response times of each parallel group taking into account how many times each
dependency is called (i.e., m; ;).

In NEPTUNE™, function instances can receive requests from users (i.e., di-
rect invocations) and/or from other functions (i.e., external invocations). More
formally, the total amount of requests r;" received by f; in a set time window w
is defined as follows:

w o w § : . w
Ty = Tusers—>f7¢ + My * 7ﬁj (4)
JEE.

where r/ .o, s 1s the total amount of direct invocations of f; in w and E, ; is
the set of edges from a source node (i.e., a function f;) to f;.

3.2 Control Algorithm

While NEPTUNE’s node controllers consider each function independently of the
others, NEPTUNE™ adapts the control strategy by considering the dependency
DAG. The control algorithm we employ distinguishes between entrypoint func-
tions and externally invoked functions. The former can be invoked by users, that
18, Tsers— f, > 0 for some w, whereas the latter are only called by other functions
in the DAGE

NEPTUNET allows users to define an SLA for each entrypoint function f;. If
fi is only called by users and not by other functions, such an input is mandatory,
whereas it is optional if f; is also invoked by other functions (as a consequence
of a direct invocation of another entrypoint).

NEPTUNE™ inherits from NEPTUNE its PI controllers, which compute re-
source allocations without synchronizing with one another. The main difference
between the two approaches is that NEPTUNE monitors and controls the re-
sponse rt; of each function f; without discriminating between local and external
response times, whereas NEPTUNE™ focuses on the local response time Irt;.
The intuition behind this design is that rt; is affected by the response times of
other functions (external invocations), which results in the problems described in
Section In contrast, Irt; depends solely on the resource allocation of f; and
allows for a more fine-grained and optimized control strategy. Since NEPTUNE™
exploits Irt;, it cannot simply reuse Equation [I] to define local set points for the
PI controllers, since SLA; is defined as an upper bound of the total response rt;.
Thus, NEPTUNE™ computes, at design time, the local set points Isp; of each
function f; by considering: i) the user-defined SLAs for entrypoint functions,
ii) the dependency among functions, and iii) the weight of each function within
the DAG. Intuitively, higher weights correspond to higher set points since such
functions are considered more complex compared to others.

In particular, the weight of a function f; is calculated by using the nominal
response time nrt; and the nominal local response time nlrt;: nrt; and nlrt; are

2 Note that, in this context, the invocation is external with respect to the execution
environment of the invoked function (as for the use of “external” in external response
time).
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Fig. 3: Example of local set point computation.

modeled, respectively, by using the formulas used to calculate rt; (Equation
and Irt; (Equation . However, whereas rt; and lrt; are measured at runtime
under user-generated workloads, nrt; and nlrt; are measured during a profiling
phase while considering the system in a quiescent state (i.e., without saturation
or request queue). Each function is profiled with a static core allocation (e.g., 1
core) and by sending one request at a time, waiting for the previous to finish. To
avoid considering cold starts, the measurement starts after a warm-up period.
These two metrics are used to understand the complexity of functions and their
dependencies in a “controlled” state and are used to properly compute set points.

To explain how we calculate local set points, we employ the same application
described in Section [2] and Figure [3] shows the main calculations. Functions f;
and f5 are depicted in light gray and are the two entrypoints of the application.
For the sake of simplicity, we consider all the dependencies as sequential and with
all multipliers m; ; equal to 1. Thus, we avoided reporting the DAG annotation.

Let f; be an entrypoint function with a user-defined SLA;, and a set point
sp; defined as in Equation [I} In the example, only f; has a user-defined SLA
that is equal to 90ms. Since « is set to 0.5, the set point sp; is equal to 45ms.
The local set point [sp; is defined as:

nlrt;
nrt;

()

lsp; = sp; *

Thus, it follows that, in the example, the local set point of function f; is
equal to 21ms. Moreover, for each function f; that is invoked by f; the set point
sp; is then defined as:

(6)
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Algorithm 1 Core allocation

lrt; < getLocal ResponseTime(f;)

err < lsp;t — Irt] !

P < gainp xerr

I < I+ gaing *xerr

cores < P+ 1

cores < min(coresyax, max(coresyin, cores))
allocateCores(f;, cores)

The setpoint sp; is used to compute the local set point of f; and the set
points sp; of all the dependencies. Given that sp; is intended to consider a
single invocation, the calculation is divided by m; ;.

In the example, the dependencies of fi are fo and f3. This means that, ideally,
the sum of the local response time of f; and the (total) response times of fo and
f3 should be equal to set point sp;. Since f3 has no dependencies, its nominal
response time nrt3 is equal to its nominal local response time nlrts. Intuitively,
since nrtz is around 3 times lower than nirt; the set point of f3 (6ms) is roughly
3 times lower than the local set point of f; (21ms). Instead, fo depends on f4
and f5, and its set point sps is set to 18ms with a nominal response time nrt,
equal to 6ms. This means, in turn, that the sum of the local response time of f;
and the response times of f; and f5 should be kept equal to 18ms.

Recursively, the local set points of each dependency are calculated by using
Equation [5} For example, the set point sps is used to calculate the local set
point of fo (3ms) along with the set points of f; (6ms) and fs5 (9ms). Note
that the case of a function without dependencies is the base case of the recursive
procedure, and its set point is equal to its local set point, such as for f3, fy,
and f5. Finally, to further optimize the resource allocation, the set points of
parallel dependencies (i.e., edges with the same source node and identifiers) are
calculated as in Equation [6] However, after the calculation, the set point of each
dependency is set to be equal to the maximum of the parallel group. This means
that even though siblings could complete execution faster, they are slowed down
with higher set points to match the slowest function of the parallel group. This
strategy does not affect the overall response time of the application and allows
for saving resources.

Proportional-Integral Control. After the previous steps, each function is pro-
vided with a local set point Isp;. As in NEPTUNE, each function f; is equipped
with a PI controller. In NEPTUNE™, the controller for a function f; monitors
only the local response time Irt; and allocates cores to meet [sp;. Without any
synchronization and thanks to the computations above, if all the controllers are
able to meet their local set points, user-defined SLAs are fulfilled. The control
algorithm we used, adapted from NEPTUNE, is reported in Algorithm

The procedure is invoked at every control period for each function instance
fi. The local response time (obtained at line 1) and the local set point are used
to compute the error err. The higher the error is, the higher the mismatch
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between the local set point and the actual measured local response time (line
2). The proportional contribution (P) is equal to the proportional gain gainp
multiplied by err (line 3). The integral contribution (1) is the sum of the previous
actions and the error times the integral gain gain; (line 4). Both gainp and
gainy are tuning parameters of the controller and can be set using different well-
known heuristics [5]. The core allocation is computed as the sum of P and I
(line 5) properly scaled according to the minimum (coresysrn) and maximum
(coresprax) allowed amount of cores (line 6). Finally, the allocation is enacted
at line 7.

4 Evaluation

Our evaluation was aimed to compare NEPTUNE™ against NEPTUNE in the
absence of bottlenecks and when bottlenecks occur.

We ran all the experiments on a MacBook Pro equipped with 4 cores and
16GB of RAM running macOS Ventura (version 13.2.1). To test the two systems,
we relied on an existing simulator called RAS (Resource Allocation Simulator),
created by the same authors of NEPTUNE [3]. The RAS simulator was originally
used to evaluate the performance of the control algorithms of NEPTUNE against
industrial approaches. We extended the simulator E| in two ways: i) we adapted
the code to support function dependencies, and ii) we implemented the novel
theoretical model and control algorithm.

The experiments used three different applications. The first two are bench-
marks widely used in the literature [I5], namely hotel Teservatiowﬂ and sock-
shozﬂ). The first is a serverless application that mimics a hotel reservation web-
site, whereas the second is an online e-commerce application that exploits a
microservice architecture that was converted to serverless functions by the au-
thors of NEPTUNE [2]. Hotel reservation includes four functions (2 entrypoints),
and it is characterized by a DAG with an average out-degree of 3 edges, an aver-
age in-degree of 1 edge, and all the dependencies have type sequential. Sockshop
includes 7 functions (5 entrypoints) with an average out — degree of 6 edges,
an average in — degree of 1 edge, and one third of the dependencies have type
sequencial while the remaining two thirds have type parallel. We also created a
more complex scenario, application complex, by synthesizing a DAG of 25 func-
tions (6 entrypoints), with an average out-degree of 2 edges, an average in-degree
of 1 edge, and roughly balanced sequential and parallel dependencies.

We repeated each experiment 10 times. In each test, we simulated executions
of 20 minutes each, and we collected, for each function, the average (1) and the
standard deviation (o) of three metrics: response times (RT) in milliseconds,
core allocations (C) in millicores, and percentage of SLA violations (V).

The tests employed workloads similar to the ones used to evaluate NEPTUNE
in [32]. In particular, each entrypoint function was stimulated with either a ramp

3 Source code available at https://doi.org/10.5281/zenodo . 8174489
* https://github.com/vhive-serverless /vSwarm /tree/main/benchmarks/hotel-app
® https://github.com/microservices-demo/microservices-demo
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or a step workload. We employed ramps that start from 10 requests and added
one request every second up to 100 (as in [2]) and randomly generated steps that
vary the workload every 50 seconds in a range between 20 and 120 requests. We
also simulated bottlenecks by changing the random step to a number of requests
that ranges between 800 and 6000.

For NEPTUNE we set an SLA for each function, whereas for NEPTUNE*
we only set them for entrypoints, since our approach is able to automatically
calculate the set points for all the other functions. For sock-shop, we employed the
same SLAs reported in the original NEPTUNE paper [2]. For hotel reservation
and complex application , we set the SLAs to double their nominal response
times. The nominal response times of hotel reservation were obtained by profiling
each function, while for complex application we generated them randomly.

We configured both NEPTUNE and NEPTUNE™ the same way. We em-
ployed a value for « equal to 0.5 for each function with SLA as in [2]. We
derived the values of gainp and gain; through manual tuning (again, as in [2]).

To be sure that the simulator was aligned with realistic results and that our
modifications did not affect its accuracy, we executed a preliminary experiment.
We simulated the same tests on NEPTUNE run in [2] with application sockshop
(i.e., same workload and configuration). We collected the results and compared
them with those reported in the paper. We observed that on average the differ-
ences were minimal: 0.3% for response times and 4.3% for core allocation.

4.1 Performance without bottlenecks

Table [1| shows the results obtained by NEPTUNE (N) and NEPTUNE™ (N+).
For the first two applications, the table lists the tested functions along with
their SLAs. For application complez, it only shows averages due to lack of space.
Functions marked with a x are entrypoints. Row overall reports the averages
over all functions.

If we focus on the part without bottlenecks, one can observe that NEPTUNE™
consistently outperforms NEPTUNE in many cases.

For example, if we consider function order of sockshop application, NEP-
TUNE™ yields a significantly more efficient resource allocation compared to
NEPTUNE (788 millicores allocated by NEPTUNE™T against 1133 millicores
allocated by NEPTUNE). The response time of NEPTUNE™ (291.3 ms) is closer
to the 300 ms set point (o * SLA with o« = 0.5 and SLA = 600ms) compared
to the result obtained by NEPTUNE (211.2 ms). This means that NEPTUNE*
does not need to over-provision CPU cores to meet the user-defined SLA and
only allocates needed resources. Overall, with benchmark sockshop, NEPTUNE*
demonstrates a more efficient performance by reducing required millicores from
510 to 388, marking a 24% reduction, while only having a small increase in
average response time (85.6 vs. 63.1 ms) and no SLA violations. Note that,
faster response times can be also obtained by NEPTUNET by simply lowering
the set points.
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Table 1: Results without and with bottlenecks.

without bottlenecks

RT

\%

C

with bottlenecks
RT
N N+ NN+ N N+| N N+

\%

11

N N+ N N+

search® 118
profile* 36
geo 27
rate 34
overall
orders* 600
catalogue®* 200
shipping 50
users* 50
payment® 50
cart-utils 200
cart-del* 200
overall

overall

T IT 9T QT QT
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56.6 62.6
0 0.1
17.3 17.2
0 0
12.9 128
0 0
16.3 16.3
0 0
25.8 27.2

QOO OO O OO

211.2 291.3 O
0.1 0 O
50.6 724 0
0 0 O
154 206 O
0 0 0
24.1 29.7 0
0 0 O
13.7 144 0
0 0 O
588 79 0
0 0 O
678 92 0
0 0 O

63.1 85.6 0

240.0263.7 0

hotel reservation

327
0.2
343
0.2
243
0.1
295
0.2
302

QOO OO O OO

1133
0
126
0
414
0
154
0.1
605
0
511
0
628
0
1

QOO OO DODDODOODODODODODOO OO

510

0 0 2719 282
0 0 4 0
46.6 46.5 2285 2290
0.1 01 0.7 0.7
0 0 243 245
0 0 01 01
0 0 295 295
0 0 01 01

292 |31.8 35 11.711.61386 778

282 | 65 78.2
0 0 0
346 | 33 33
0.2 0 0
245 | 12.9 12.8
0.1 0 0
295 | 16.3 16.3
0.2 0 0
sockshop
788 [317.3 384.7
0.6 | 0.1 0.1
88 | 50.6 72.4
0.1 ] 0.1 0
312 | 154 20.6
0.1 0 0
127 | 24.1  29.7
0.1 0 0
578 | 13.7 144
0.6 0 0
372|589 79
0.4 0 0
450 | 185.8 185.4
0.3 ] 0.1 0.1

388 |95.1 112.3 6.6 6.6 776

complex

0
0

0
0
0
0
0
0
0
0
0

45.9 4
0

0
0
0
0
0
0
0
0
0
0
0
0
5.
0

2093 788.3

5.2
126
0
414
0
154
0.1
605
0
511
0

0.5
88
0.1
312
0.2
127
0.1
578
0.5
372
0.3

9 1527 1530

0.2

0.2
542

0 4627 3013‘313.2 357.511.515.3 6530 3760

The trend is similar with more complex applications (i.e., complex): NEP-
TUNET yields a more efficient allocation (3013 vs. 4627 millicores), with a 27%
improvement, no SLA violations, and comparable to NEPTUNE response times.

Conversely, the two approaches provide similar performance with benchmark
hotel reservation except for function search where NEPTUNET is slightly more
efficient in terms of core allocation. This can be attributed to the application’s
simple DAG and its limited amount of dependencies. This result demonstrates
that NEPTUNE™ does not introduce any performance degradation in scenarios
where dependencies are not a critical factor.
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Fig. 4: Results for function order (sockshop).

4.2 Performance with bottlenecks

Table [1| also shows the results obtained when managing bottlenecks (created as
explained above). As for application hotel reservation, we raised the number of
requests for function profile, leading to a significant amount (around 47%) of SLA
violations obtained by both NEPTUNE and NEPTUNET. Such a bottleneck
inevitably raises the response time of search, which directly depends on profile.
Since NEPTUNE™ only considers local response times, our solution is able to
properly manage this function by only allocating 282 millicores on average, while
NEPTUNE raises the average core allocation to 2719 millicores, that is, some
90% higher than NEPTUNET. The response times are comparable: 65ms with
NEPTUNE and 78.2ms NEPTUNE™. The other functions, not affected by the
bottleneck, showed performance similar to the ones observed in the experiments
described in the previous section. Overall with this application, NEPTUNE™
obtained a slightly higher average response time (35ms vs. 31.8ms) and a 44%
lower average core allocation (778 vs. 1386 millicores).

We observed similar results also with sockshop. In this case, we created a
bottleneck in function cart-del as demonstrated by the high number of viola-
tions obtained by the two approaches. The results reported for function order,
which depends on cart-del, clearly show the benefits of NEPTUNE™. While NEP-
TUNE™ results in a higher response time (384.7 vs. 317.3), it also significantly
reduces the number of cores used, allocating only 788.3 millicores against 2093
(62% improvement). This is clearly shown in Figure [4] where NEPTUNE’s con-
troller for function order is unstable due to the bottleneck in cart-del and reaches
a peak of some 4000 allocated millicores. In contrast, NEPTUNE™ keeps its allo-
cation roughly stable at around 800 millicores after the initial ramp. Overall, as
for sockshop, NEPTUNET™ obtained a core allocation that is almost 30% better
(lower) on average than NEPTUNE with comparable response times (equal SLA
violations).
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Application complex suggests that the more complex an application becomes,
the more efficient NEPTUNET is: 3760 vs. 6530 millicores, with a 42% improve-
ment at the cost of only 4.8% more SLA violations.

By taking into account function dependencies, NEPTUNE™ efficiently al-
locates resources across diverse benchmarks and scenarios. Conversely, NEP-
TUNE, without dependency awareness, tends to over-provision resources. This
results in faster, yet less optimized, response times that only rarely lead to fewer
SLA violations. NEPTUNE’s behavior is partly due to its inability to maintain
set points, resulting in an over-speeding that is not beneficial in most of the cases.
Instead, NEPTUNE™ provides more precise control and offers a more convenient
trade-off between resource efficiency and response times. If faster response times
are required, NEPTUNE" users can simply define stricter SLAs or lower the
value of a to obtain a more responsive system.

5 Related Work

The problem of managing microservices or serverless functions deployed on edge
infrastructures has been already studied in the literature [2T2]. Such approaches
tackle component placement, routing, and resource management, but only a few
of them take function dependency into account [T4UT822].

He et al. [14] introduce a novel approach for deploying microservices to edge
servers by taking into account their intricate dependencies with the goal of opti-
mizing response time. They do not consider resource allocation but only compo-
nent placement. Therefore, the amount of CPU cores to obtain a certain response
time is not optimized. In contrast, NEPTUNE™ considers the trade-off between
allocated resources and response time. They also do not consider parallel and
multiple invocations of the same components.

Xu et al. [22] propose a solution for optimizing the placement at the edge
of serverless functions with dependencies. They also take into account stateful
computation and network delays. Similarly, Ashraf et al. [I8] propose SONIC, a
solution that aims to optimize the performance and operation cost of serverless
applications by deciding the best function placement for exchanging data. Ap-
plications are abstracted as DAGs as in NEPTUNE™. These approaches select
the best path for exchanging data by considering data size, function dependen-
cies, and network state. They are complementary to NEPTUNE™T since they
exploit dependencies for optimizing data exchange and do not consider resource
allocation.

Moving to runtime resource management [A7I2T23], these studies either dis-
regard function dependencies entirely, as in the case of [2I], or they utilize a
probabilistic approach to pre-allocate functions, such as [4[7I23]. For instance,
Daw et al. [7] introduce Xanadu, which uses a directed acyclic graph of depen-
dencies and a probabilistic model to identify the most likely execution paths. To
reduce the overhead from the cascading cold-start of functions, it pre-allocates
resources (i.e., containers) for the most probable path in response to each func-
tion call. Similarly, Kraken [4] estimates the request volume for each function
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and uses these estimates to deploy the necessary containers. By batching mul-
tiple requests, Kraken utilizes fewer resources than Xanadu: under moderate to
heavy load, Xanadu deploys nearly 32% more containers than Kraken [4]. How-
ever, both Xanadu and Kraken’s probabilistic approaches can lead to resource
over- or under-provisioning if the estimated probability distribution does not
reflect the actual workload fluctuations over time. Furthermore, neither solution
considers resource allocation for functions with dependencies in the event of a
bottleneck as NEPTUNE™ does.

Conversely, Wang et al. [2I] present LaSS, a platform for managing the la-
tency of serverless computations. LaSS uses a dynamic resource allocation strat-
egy based on workload variations and a queuing model. A weighted fair-share
resource allocation strategy is employed to prevent overload and maintain the
desired response time. While this work makes a significant contribution by mit-
igating SLA violations and over-allocation of resources, the authors do not con-
sider function dependencies, which could lead to inefficient allocations. Once
more, NEPTUNE™ uses control theory to only allocate the necessary resources
to functions, based on the number of requests and defined SLA, and allows for
a more efficient resource usage.

6 Conclusions

This paper presents NEPTUNE™, a dependency-aware resource allocation so-
lution for serverless functions deployed on edge infrastructures. We extended
NEPTUNE by developing a new theoretical model and control algorithm that
exploit dependencies to efficiently allocate CPU cores to serverless functions.
The evaluation shows that NEPTUNE™ outperforms the original framework up
to 42% in terms of resource allocation. In the future, we will improve our solution
by also considering the placement of dependency-aware functions.
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