Skip to main content

Unveiling Bottlenecks in Logistics: A Case Study on Process Mining for Root Cause Identification and Diagnostics in an Air Cargo Terminal

  • Conference paper
  • First Online:
Service-Oriented Computing (ICSOC 2023)

Abstract

To improve processes in logistics, it is crucial to understand the factors influencing performance. To achieve this, process mining utilizes event data to extract insights into operational processes. In this paper, we present a case study conducted in an air cargo terminal, where process mining is applied to event data collected during package distribution. The primary objective is to identify the root causes of bottlenecks in the system. However, practical limitations, including noisy sensor data, scalability challenges, and abstraction limitations, require a different approach than conventional process mining projects. Building upon existing process mining techniques, we develop a two-fold approach to identify root causes at the data level and provide diagnostics at the business level. Through a comprehensive analysis of the provided datasets, we substantiate the effectiveness and practical applicability of our approach in analyzing root causes.

This work was supported by the InnoHK funding launched by Innovation and Technology Commission, Hong Kong SAR. Additionally, we thank Sebastiaan van Zelst for his support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For confidentiality, we pseudo-anonymized the datasets, preserving the relative relation between incidents. In this case study, we only present pertinent attributes.

References

  1. van der Aalst, W.M.P., Tacke Genannt Unterberg, D., Denisov, V., Fahland, D.: Visualizing token flows using interactive performance spectra. In: Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 369–380. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-8_18

    Chapter  Google Scholar 

  2. Burke, A., Leemans, S.J.J., Wynn, M.T.: Stochastic process discovery by weight estimation. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 260–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_20

    Chapter  Google Scholar 

  3. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99414-7

    Book  Google Scholar 

  4. Chapela-Campa, D., Mucientes, M., Lama, M.: Simplification of complex process models by abstracting infrequent behaviour. In: Yangui, S., Bouassida Rodriguez, I., Drira, K., Tari, Z. (eds.) ICSOC 2019. LNCS, vol. 11895, pp. 415–430. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33702-5_32

    Chapter  Google Scholar 

  5. Denisov, V., Belkina, E., Fahland, D., van der Aalst, W.M.P.: The performance spectrum miner: visual analytics for fine-grained performance analysis of processes. In: International Conference on Business Process Management (Dissertation/Demos/Industry), vol. 2196 (2018)

    Google Scholar 

  6. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Predictive performance monitoring of material handling systems using the performance spectrum. In: International Conference on Process Mining (2019)

    Google Scholar 

  7. van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM\(^2\): a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_19

    Chapter  Google Scholar 

  8. Ge, J., Sigsgaard, K.W., Mortensen, N.H., Hansen, K.B., Agergaard, J.K.: Structured process mining in maintenance performance analysis: a case study in the offshore oil and gas industry. In: International Symposium on System Security, Safety, and Reliability (2023)

    Google Scholar 

  9. Van Houdt, G., Depaire, B., Martin, N.: Root cause analysis in process mining with probabilistic temporal logic. In: Munoz-Gama, J., Lu, X. (eds.) ICPM 2021. LNBIP, vol. 433, pp. 73–84. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98581-3_6

    Chapter  Google Scholar 

  10. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: Aligning event logs and declarative process models for conformance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 82–97. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32885-5_6

    Chapter  Google Scholar 

  11. Leung, C.S.K., Lau, H.Y.K.: Simulation-based optimization for material handling systems in manufacturing and distribution industries. Wirel. Netw. 26(7), 4839–4860 (2020)

    Article  Google Scholar 

  12. Mansouri, T., Moghadam, M.R.S., Monshizadeh, F., Zareravasan, A.: IOT data quality issues and potential solutions: a literature review. Comput. J. 66(3), 615–625 (2023)

    Article  Google Scholar 

  13. Rudnitckaia, J., Venkatachalam, H.S., Essmann, R., Hruska, T., Colombo, A.W.: Screening process mining and value stream techniques on industrial manufacturing processes: process modelling and bottleneck analysis. IEEE Access 10, 24203–24214 (2022)

    Article  Google Scholar 

  14. Sommers, D., Menkovski, V., Fahland, D.: Process discovery using graph neural networks. In: International Conference on Process Mining (2021)

    Google Scholar 

  15. Tang, J., Liu, Y., Lin, K., Li, L.: Process bottlenecks identification and its root cause analysis using fusion-based clustering and knowledge graph. Adv. Eng. Inform. 55, 101862 (2023)

    Article  Google Scholar 

  16. Unger, A.J., dos Santos Neto, J.F., Fantinato, M., Peres, S.M., Trecenti, J., Hirota, R.: Process mining-enabled jurimetrics: analysis of a Brazilian court’s judicial performance in the business law processing. In: International Conference for Artificial Intelligence and Law (2021)

    Google Scholar 

  17. Verbeek, E., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Prom 6: the process mining toolkit. In: International Conference on Business Process Management, vol. 615 (2010)

    Google Scholar 

  18. Yasmin, F.A., Bukhsh, F.A., de Alencar Silva, P.: Process enhancement in process mining: a literature review. In: CEUR Workshop Proceedings, vol. 2270 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiao-Yun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, CY. et al. (2023). Unveiling Bottlenecks in Logistics: A Case Study on Process Mining for Root Cause Identification and Diagnostics in an Air Cargo Terminal. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds) Service-Oriented Computing. ICSOC 2023. Lecture Notes in Computer Science, vol 14420. Springer, Cham. https://doi.org/10.1007/978-3-031-48424-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48424-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48423-0

  • Online ISBN: 978-3-031-48424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics