Abstract
To improve processes in logistics, it is crucial to understand the factors influencing performance. To achieve this, process mining utilizes event data to extract insights into operational processes. In this paper, we present a case study conducted in an air cargo terminal, where process mining is applied to event data collected during package distribution. The primary objective is to identify the root causes of bottlenecks in the system. However, practical limitations, including noisy sensor data, scalability challenges, and abstraction limitations, require a different approach than conventional process mining projects. Building upon existing process mining techniques, we develop a two-fold approach to identify root causes at the data level and provide diagnostics at the business level. Through a comprehensive analysis of the provided datasets, we substantiate the effectiveness and practical applicability of our approach in analyzing root causes.
This work was supported by the InnoHK funding launched by Innovation and Technology Commission, Hong Kong SAR. Additionally, we thank Sebastiaan van Zelst for his support.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For confidentiality, we pseudo-anonymized the datasets, preserving the relative relation between incidents. In this case study, we only present pertinent attributes.
References
van der Aalst, W.M.P., Tacke Genannt Unterberg, D., Denisov, V., Fahland, D.: Visualizing token flows using interactive performance spectra. In: Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 369–380. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-8_18
Burke, A., Leemans, S.J.J., Wynn, M.T.: Stochastic process discovery by weight estimation. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 260–272. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_20
Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99414-7
Chapela-Campa, D., Mucientes, M., Lama, M.: Simplification of complex process models by abstracting infrequent behaviour. In: Yangui, S., Bouassida Rodriguez, I., Drira, K., Tari, Z. (eds.) ICSOC 2019. LNCS, vol. 11895, pp. 415–430. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33702-5_32
Denisov, V., Belkina, E., Fahland, D., van der Aalst, W.M.P.: The performance spectrum miner: visual analytics for fine-grained performance analysis of processes. In: International Conference on Business Process Management (Dissertation/Demos/Industry), vol. 2196 (2018)
Denisov, V., Fahland, D., van der Aalst, W.M.P.: Predictive performance monitoring of material handling systems using the performance spectrum. In: International Conference on Process Mining (2019)
van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM\(^2\): a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19069-3_19
Ge, J., Sigsgaard, K.W., Mortensen, N.H., Hansen, K.B., Agergaard, J.K.: Structured process mining in maintenance performance analysis: a case study in the offshore oil and gas industry. In: International Symposium on System Security, Safety, and Reliability (2023)
Van Houdt, G., Depaire, B., Martin, N.: Root cause analysis in process mining with probabilistic temporal logic. In: Munoz-Gama, J., Lu, X. (eds.) ICPM 2021. LNBIP, vol. 433, pp. 73–84. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98581-3_6
de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: Aligning event logs and declarative process models for conformance checking. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 82–97. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32885-5_6
Leung, C.S.K., Lau, H.Y.K.: Simulation-based optimization for material handling systems in manufacturing and distribution industries. Wirel. Netw. 26(7), 4839–4860 (2020)
Mansouri, T., Moghadam, M.R.S., Monshizadeh, F., Zareravasan, A.: IOT data quality issues and potential solutions: a literature review. Comput. J. 66(3), 615–625 (2023)
Rudnitckaia, J., Venkatachalam, H.S., Essmann, R., Hruska, T., Colombo, A.W.: Screening process mining and value stream techniques on industrial manufacturing processes: process modelling and bottleneck analysis. IEEE Access 10, 24203–24214 (2022)
Sommers, D., Menkovski, V., Fahland, D.: Process discovery using graph neural networks. In: International Conference on Process Mining (2021)
Tang, J., Liu, Y., Lin, K., Li, L.: Process bottlenecks identification and its root cause analysis using fusion-based clustering and knowledge graph. Adv. Eng. Inform. 55, 101862 (2023)
Unger, A.J., dos Santos Neto, J.F., Fantinato, M., Peres, S.M., Trecenti, J., Hirota, R.: Process mining-enabled jurimetrics: analysis of a Brazilian court’s judicial performance in the business law processing. In: International Conference for Artificial Intelligence and Law (2021)
Verbeek, E., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Prom 6: the process mining toolkit. In: International Conference on Business Process Management, vol. 615 (2010)
Yasmin, F.A., Bukhsh, F.A., de Alencar Silva, P.: Process enhancement in process mining: a literature review. In: CEUR Workshop Proceedings, vol. 2270 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, CY. et al. (2023). Unveiling Bottlenecks in Logistics: A Case Study on Process Mining for Root Cause Identification and Diagnostics in an Air Cargo Terminal. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds) Service-Oriented Computing. ICSOC 2023. Lecture Notes in Computer Science, vol 14420. Springer, Cham. https://doi.org/10.1007/978-3-031-48424-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-48424-7_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48423-0
Online ISBN: 978-3-031-48424-7
eBook Packages: Computer ScienceComputer Science (R0)