Skip to main content

The WalkingSeat: A Leaning Interface for Locomotion in Virtual Environments

  • Conference paper
  • First Online:
Virtual Reality and Mixed Reality (EuroXR 2023)

Abstract

When users experience immersive Virtual Reality (VR), the limited physical space available can become a significant problem when they use their real walk to navigate the virtual environment (VE). To address this limitation, various interfaces and metaphors have been proposed that combine different user inputs ranging from controllers, gestures, and body tracking. However, not all of these solutions are natural and intuitive, reducing the level of immersion and presence in VR. In this paper, we present Walking Seat (WS), a novel leaning interface (LI) for locomotion in VEs that the user can operate while seated. The main objective of this work is to design an interface that provides an intuitive and immersive locomotion experience. The WS interface uses pressure mapping and a gyroscope to track the user’s upper body tilt and waist orientation. The WS interface has been thoroughly evaluated, using an articulated locomotion testbed and compared its performance with three non-leaning interfaces previously tested with the same reference protocol. The experimental results suggest that the WS interface could be a promising solution for navigation in immersive VR applications and open new directions for further research to refine and improve the WS interface for more complex tasks and scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tekscan.com.

References

  1. Ashiri, M., Lithgow, B., Mansouri, B., Moussavi, Z.: Comparison between vestibular responses to a physical and virtual reality rotating chair. In: Proceedings of the 11th Augmented Human International Conference (AH 20). Association for Computing Machinery (2020). https://doi.org/10.1145/3396339.3396392

  2. Boletsis, C., Cedergren, J.E.: VR locomotion in the new era of virtual reality: an empirical comparison of prevalent techniques. Adv. Human-Comput. Interact. (2019). https://doi.org/10.1155/2019/7420781

    Article  Google Scholar 

  3. Boletsis, C., Chasanidou, D.: A typology of virtual reality locomotion techniques. Multimodal Technol. Interact. 6(9), 72 (2022). https://doi.org/10.3390/mti6090072

    Article  Google Scholar 

  4. Brooke, J.: SUS: a quick and dirty usability scale. Usability Eval. Ind. 189 (1995)

    Google Scholar 

  5. Buttussi, F., Chittaro, L.: Locomotion in place in virtual reality: a comparative evaluation of joystick, teleport, and leaning. IEEE Trans. Visual Comput. Graphics 27(1), 125–136 (2021). https://doi.org/10.1109/TVCG.2019.2928304

    Article  Google Scholar 

  6. Cakmak, T., Hager, H.: Cyberith virtualizer: a locomotion device for virtual reality. In: Proceedings of the ACM SIGGRAPH Emerging Technologies. ACM (2014). https://doi.org/10.1145/2614066.2614105

  7. Cannavò, A., Calandra, D., Pratticò, F.G., Gatteschi, V., Lamberti, F.: An evaluation testbed for locomotion in virtual reality. IEEE Trans. Visual Comput. Graphics 27(3), 1871–1889 (2020). https://doi.org/10.1109/TVCG.2020.3032440

    Article  Google Scholar 

  8. Douglas, S.A., Kirkpatrick, A.E., MacKenzie, I.S.: Testing pointing device performance and user assessment with the ISO 9241, part 9 standard. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. p. 215–222. CHI ’99, Association for Computing Machinery, New York, NY, USA (1999). https://doi.org/10.1145/302979.303042

  9. Farrow, R., Iacovides, I.: Gaming and the limits of digital embodiment. Philos. Technol. 27(2), 221–233 (2014). https://doi.org/10.1007/s13347-013-0111-1

    Article  Google Scholar 

  10. Feasel, J., Whitton, M.C., Wendt, J.D.: LLCM-WIP: low-latency, continuous-motion walking-in-place. In: Proceedings of the IEEE Symposium on 3D User Interfaces, pp. 97–104 (2008). https://doi.org/10.1109/3DUI.2008.4476598

  11. Flemming, C., Weyers, B., Zielasko, D.: How to take a brake from embodied locomotion - seamless status control methods for seated leaning interfaces. In: Proceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces (IEEE VR), pp. 728–736 (2022). https://doi.org/10.1109/VR51125.2022.00094

  12. Harris, A., Nguyen, K., Wilson, P.T., Jackoski, M., Williams, B.: Human joystick: wii-leaning to translate in large virtual environments. In: Proceedings of the 13th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, pp. 231–234. ACM (2014). https://doi.org/10.1145/2670473.2670512

  13. Hashemian, A.M., Lotfaliei, M., Adhikari, A., Kruijff, E., Riecke, B.E.: Headjoystick: improving flying in VR using a novel leaning-based interface. IEEE Trans. Visual Comput. Graphics 28(4), 1792–1809 (2022). https://doi.org/10.1109/TVCG.2020.3025084

    Article  Google Scholar 

  14. Hashemian, A.M., Riecke, B.E.: Leaning-based 360 interfaces: investigating virtual reality navigation interfaces with leaning-based-translation and full-rotation. In: Lackey, S., Chen, J. (eds.) VAMR 2017. LNCS, vol. 10280, pp. 15–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57987-0_2

    Chapter  Google Scholar 

  15. Johnson, M.A., Moradi, M.H.: PID Control. Springer-Verlag (2005). https://doi.org/10.1007/1-84628-148-2

    Article  Google Scholar 

  16. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993). https://doi.org/10.1207/s15327108ijap0303_3

    Article  Google Scholar 

  17. Kilteni, K., Groten, R., Slater, M.: The sense of embodiment in virtual reality. Presence Teleoperators Virtual Environ.21(4), 373–387 (2012). https://doi.org/10.1162/PRES_a_00124

  18. Kitson, A., Hashemian, A.M., Stepanova, E.R., Kruijff, E., Riecke, B.E.: Comparing leaning-based motion cueing interfaces for virtual reality locomotion. In: Proceedings of the IEEE Symposium on 3D User Interfaces (3DUI), pp. 73–82 (2017). https://doi.org/10.1109/3DUI.2017.7893320

  19. Kitson, A., Riecke, B.E., Hashemian, A.M., Neustaedter, C.: NaviChair: Evaluating an embodied interface using a pointing task to navigate virtual reality. In: Proceedings of the 3rd ACM Symposium on Spatial User Interaction (SUI 2015), pp. 123–126 (2015). https://doi.org/10.1145/2788940.2788956

  20. Kruijff, E., et al.: On your feet!: enhancing vection in leaning-based interfaces through multisensory stimuli. In: Proceedings of the 4th Symposium on Spatial User Interaction (SUI), pp. 149–158. ACM (2016). https://doi.org/10.1145/2983310.2985759

  21. Lee, J., Hwang, J.I.: Walk-in-place navigation in VR. In: Proceedings of the ACM International Conference on Interactive Surfaces and Spaces, pp. 427–430 (2019). https://doi.org/10.1145/3343055.3361926

  22. Levine, D., Richards, J., Whittle, M.W.: Whittle’s Gait Analysis. Elsevier Health Sciences (2012), google-Books-ID: xZbQAQAAQBAJ

    Google Scholar 

  23. Marchal, M., Pettré, J., Lécuyer, A.: Joyman: a human-scale joystick for navigating in virtual worlds. In: 2011 IEEE Symposium on 3D User Interfaces (3DUI), pp. 19–26 (2011–03). https://doi.org/10.1109/3DUI.2011.5759212

  24. Mayor, J., Raya, L., Sanchez, A.: A comparative study of virtual reality methods of interaction and locomotion based on presence, cybersickness, and usability. IEEE Trans. Emerg. Top. Comput. 9(3), 1542–1553 (2021). https://doi.org/10.1109/TETC.2019.2915287

    Article  Google Scholar 

  25. Nguyen-Vo, T., Riecke, B.E., Stuerzlinger, W., Pham, D.M., Kruijff, E.: NaviBoard and NaviChair: limited translation combined with full rotation for efficient virtual locomotion. IEEE Trans. Visual. Comput. Graph. 27(1), 165–177 (2021). https://doi.org/10.1109/TVCG.2019.2935730, conference Name: IEEE Transactions on Visualization and Computer Graphics

  26. Rahimi, K., Banigan, C., Ragan, E.D.: Scene transitions and teleportation in virtual reality and the implications for spatial awareness and sickness. IEEE Trans. Visual Comput. Graph. 26(6), 2273–2287 (2020). https://doi.org/10.1109/TVCG.2018.2884468

    Article  Google Scholar 

  27. Schubert, T., Friedmann, F., Regenbrecht, H.: The experience of presence: Factor analytic insights. Presence: Teleoper. Virtual Environ. 10(3), 266–281 (2001). https://doi.org/10.1162/105474601300343603

  28. Sevinc, V., Berkman, M.I.: Psychometric evaluation of simulator sickness questionnaire and its variants as a measure of cybersickness in consumer virtual environments. Appl. Ergon. 82, 102958 (2020). https://doi.org/10.1016/j.apergo.2019.102958

    Article  Google Scholar 

  29. Wang, J., Lindeman, R.W.: Comparing isometric and elastic surfboard interfaces for leaning-based travel in 3d virtual environments. In: 2012 IEEE Symposium on 3D User Interfaces (3DUI), pp. 31–38 (2012–03). https://doi.org/10.1109/3DUI.2012.6184181

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Vezzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vezzani, L., Strada, F., Pratticò, F.G., Bottino, A. (2023). The WalkingSeat: A Leaning Interface for Locomotion in Virtual Environments. In: Zachmann, G., et al. Virtual Reality and Mixed Reality. EuroXR 2023. Lecture Notes in Computer Science, vol 14410. Springer, Cham. https://doi.org/10.1007/978-3-031-48495-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48495-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48494-0

  • Online ISBN: 978-3-031-48495-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics