Skip to main content

TON-ViT: A Neuro-Symbolic AI Based on Task Oriented Network with a Vision Transformer

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2023)

Abstract

The objective of this paper is to present a neuro-symbolic AI based technique to represent field-medicine knowledge, referred as to TON-ViT. TON-ViT integrates a Deep Learning Model with an explicit symbolic manipulation, a task graph. This task graph describes the steps of each trauma resuscitation as denoted by a verb and noun pair. Through this representation, symbolic processing and manipulation on task graphs, we can find stereotypical procedures, regardless of style of the performer. Furthermore, we can use this technique to find differences in styles, errors, shortcuts and generate procedures never seen before. When used in combination with a transformer, it can help recognize actions in egocentric vision datasets. Last, through symbolic manipulations on the graph, it is possible to generate medical knowledge which the model has not seen before. We present preliminary results after testing the TON-ViT with the Trauma Thompson Dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fensel, D., et al.: Introduction: what is a knowledge graph? In: Knowledge Graphs, pp. 1–10. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37439-6_1

  2. Zou, X.: A survey on application of knowledge graph. J. Phys. Conf. Ser. 1487(1), 012016 (2020). https://doi.org/10.1088/1742-6596/1487/1/012016

  3. Yang, S., Zou, L., Wang, Z., Yan, J., Wen, J.-R.: Efficiently answering technical questions—a knowledge graph approach. Proc. AAAI Conf. Artif. Intell. 31(1),(2017). https://doi.org/10.1609/aaai.v31i1.10956

  4. Liew, C.Y., Labadin, J., Kok, W.C., Eze, M.O.: A methodology framework for bipartite network modeling. Appl. Netw. Sci. 8(1), 6 (2023). https://doi.org/10.1007/s41109-023-00533-y

  5. Li, Z., et al.: Temporal knowledge graph reasoning based on evolutional representation learning. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 408–417. ACM (2021). ISBN 978-1-4503-8037-9. https://doi.org/10.1145/3404835.3462963.

  6. Guo, Q., Zhuang, F., Qin, C., Zhu, H., Xie, X., Xiong, H., He, Q.: A survey on knowledge graph-based recommender systems. IEEE Trans. Knowl. Data Eng. 34(8), 3549–3568 (2022). https://doi.org/10.1109/TKDE.2020.3028705

  7. Wang, X., et al.: Learning intents behind interactions with knowledge graph for recommendation. In: Proceedings of the Web Conference 2021, pp. 878–887. ACM (2021). ISBN 978-1-4503-8312-7. https://doi.org/10.1145/3442381.3450133

  8. Chen, H., Luo, X.: An automatic literature knowledge graph and reasoning network modeling framework based on ontology and natural language processing. Adv. Eng. Informatics 42, 100959 (2019). https://doi.org/10.1016/j.aei.2019.100959

  9. Peña, J., Rochat, Y.: Bipartite graphs as models of population structures in evolutionary multiplayer games. PLoS ONE 7(9), e44514 (2012). https://doi.org/10.1371/journal.pone.0044514

  10. Paulius, D., Huang, Y., Milton, R., Buchanan, W.D., Sam, J., Sun, Y.: Functional object-oriented network for manipulation learning. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2655–2662. https://doi.org/10.1109/IROS.2016.7759413.

  11. Tiddi, I., Schlobach, S.: Knowledge graphs as tools for explainable machine learning: a survey. Artif. Intell. 302, 103627 (2022). https://doi.org/10.1016/j.artint.2021.103627

  12. Marino, K., Salakhutdinov, R., Gupta, A.: The more you know: using knowledge graphs for image classification. arXiv preprint arXiv:1612.04844 (2017)

  13. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semantic Web 8(3), 489–508 (2016). https://doi.org/10.3233/SW-160218

  14. Chaudhri, V.K., et al.: Knowledge graphs: introduction, history, and perspectives. AI Magazine 43(1), 17–29 (2022). https://doi.org/10.1002/aaai.12033

  15. Lecue, F.: On the role of knowledge graphs in explainable AI. Semantic Web 11(1), 41–51 (2020). https://doi.org/10.3233/SW-190374

  16. Zhang, W., Paudel, B., Zhang, W., Bernstein, A., Chen, H.: Interaction embeddings for prediction and explanation in knowledge graphs. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 96–104. ACM (2019). ISBN 978-1-4503-5940-5. https://doi.org/10.1145/3289600.3291014

  17. Manghani, K.: Quality assurance: importance of systems and standard operating procedures. Perspect. Clin. Res. 2(1), 34 (2011). https://doi.org/10.4103/2229-3485.76288

  18. Hitzler, P., Eberhart, A., Ebrahimi, M., Sarker, M.K., Zhou, L.: Neuro-symbolic approaches in artificial intelligence. Natl. Sci. Rev. 9(6), nwac035 (2022). https://doi.org/10.1093/nsr/nwac035

  19. Hitzler, P.: Some advances regarding ontologies and neuro-symbolic artificial intelligence. In: Brazdil, P., van Rijn, J.N., Gouk, H., Mohr, F. (eds.) ECMLPKDD Workshop on Meta-Knowledge Transfer, volume 191 of Proceedings of Machine Learning Research, pp. 8–10. PMLR (2022). www.proceedings.mlr.press/v191/hitzler22a.html

  20. Xie, X., Kersting, K., Neider, D.: Neuro-symbolic verification of deep neural networks. arXiv preprint arXiv:2203.00938 (2022)

  21. Hamilton, K., Nayak, A., Božić, B., Longo, L.: Is Neuro-symbolic AI Meeting Its Promises in Natural Language Processing? A Structured Review, pp. 1–42 (2022). https://doi.org/10.3233/SW-223228. www.medra.org/servlet/aliasResolver?alias=iospress &doi=10.3233/SW-223228

  22. Oltramari, A., Francis, J., Henson, C., Ma, K., Wickramarachchi, R.: Neuro-symbolic architectures for context understanding. arXiv preprint arxiv.org/abs/2003.04707 (2020). https://doi.org/10.48550/ARXIV.2003.04707.Publisher: arXiv Version Number: 1

  23. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2021)

  24. Pan, X., Ye, T., Han, D., Song, S., Huang, G.: Contrastive language-image pre-training with knowledge graphs. arXiv preprint arXiv:2210.08901 (2022)

  25. Zhao, H., Torralba, A., Torresani, L., Yan, Z.: HACS: human action clips and segments dataset for recognition and temporal localization. arXiv preprint arXiv:1712.09374 (2019)

  26. Rao, T.S., Radhakrishnan, R., Andrade, C.: Standard operating procedures for clinical practice. Ind. J. Psychiatry 53(1), 1–3 (2011). https://doi.org/10.4103/0019-5545.75542

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Wachs .

Editor information

Editors and Affiliations

Additional information

Disclaimers: The views expressed are those of the author(s) and do not reflect the official policy of the Department of the Army, the Department of Defense, or the U.S. Government. The investigators have adhered to the policies for the protection of human subjects as prescribed in 45 CFR 46.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhuo, Y. et al. (2024). TON-ViT: A Neuro-Symbolic AI Based on Task Oriented Network with a Vision Transformer. In: Waiter, G., Lambrou, T., Leontidis, G., Oren, N., Morris, T., Gordon, S. (eds) Medical Image Understanding and Analysis. MIUA 2023. Lecture Notes in Computer Science, vol 14122. Springer, Cham. https://doi.org/10.1007/978-3-031-48593-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48593-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48592-3

  • Online ISBN: 978-3-031-48593-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics