Skip to main content

Harnessing the Potential of Deep Learning for Total Shoulder Implant Classification: A Comparative Study

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14122))

Included in the following conference series:

  • 334 Accesses

Abstract

Orthopedic implant identification is an important and necessary step prior to performing revision surgery of different joints. The inability to identify an implant can lead to significant surgical difficulties with consequent unfavorable outcomes. This paper proposes a novel framework to identify the make and model of seven (7) different total shoulder arthroplasty implants utilizing plain X-ray images and Artificial intelligence. The proposed work classified implants with an accuracy of 91.48% and with an AUC (Area under curve) of 0.9932 showing higher effectiveness in orthopedic implant identification. Further work is required to enhance and progress this work, with a goal of greater accuracy and fewer errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mattei, L., Mortera, S., Arrigoni, C., Castoldi, F.: Anatomic shoulder arthroplasty: an update on indications, technique, results and complication rates. Joints 3(02), 72–77 (2015)

    Article  Google Scholar 

  2. Sanchez-Sotelo, J.: Total shoulder arthroplasty. Open Orthopaed. J. 5, 106 (2011)

    Article  Google Scholar 

  3. Jensen, A.R., Tangtiphaiboontana, J., Marigi, E., Mallett, K.E., Sperling, J.W., Sanchez-Sotelo, J.: Anatomic total shoulder arthroplasty for primary glenohumeral osteoarthritis is associated with excellent outcomes and low revision rates in the elderly. J. Shoulder Elbow Surg. 30(7), S131–S139 (2021)

    Article  Google Scholar 

  4. Ravi, V., Murphy, R.J., Moverley, R., Derias, M., Phadnis, J.: Outcome and complications following revision shoulder arthroplasty: a systematic review and meta-analysis. Bone Joint Open 2(8), 618–630 (2021)

    Article  Google Scholar 

  5. Klug, A., Herrmann, E., Fischer, S., Hoffmann, R., Gramlich, Y.: Projections of primary and revision shoulder arthroplasty until 2040: facing a massive rise in fracture-related procedures. J. Clin. Med. 10(21), 5123 (2021)

    Article  Google Scholar 

  6. Gill, D.R., Page, R.S., Graves, S.E., Rainbird, S., Hatton, A.: The rate of 2nd revision for shoulder arthroplasty as analyzed by the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Acta Orthop. 92(3), 258–263 (2021)

    Article  Google Scholar 

  7. Longo, U.G., et al.: Shoulder replacement: an epidemiological nationwide study from 2009 to 2019. BMC Musculoskel. Disord. 23(1), 1–12 (2022)

    Article  Google Scholar 

  8. Best, M.J., Wang, K.Y., Nayar, S.K., Agarwal, A.R., McFarland, E.G., Srikumaran, U.: Epidemiology of revision shoulder arthroplasty in the United States: incidence, demographics, and projected volume from 2018 to 2030. In Seminars in Arthroplasty: JSES, vol. 33, no. 1, pp. 53–58. WB Saunders (2023)

    Google Scholar 

  9. Yılmaz, A.: Shoulder implant manufacturer detection by using deep learning: proposed channel selection layer. Coatings 11(3), 346 (2021)

    Article  Google Scholar 

  10. Borjali, A., Chen, A.F., Muratoglu, O.K., Morid, M.A., Varadarajan, K.M.: Detecting total hip replacement prosthesis design on plain radiographs using deep convolutional neural network. J. Orthopaed. Res.® 38(7), 1465–1471 (2020)

    Google Scholar 

  11. Chung, S.W., et al.: Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 89(4), 468–473 (2018)

    Article  Google Scholar 

  12. Grauhan, N.F., et al.: Deep learning for accurately recognizing common causes of shoulder pain on radiographs. Skeletal Radiol. 1–8 (2021)

    Google Scholar 

  13. Dhillon, A., Verma, G.K.: Convolutional neural network: a review of models, methodologies and applications to object detection. Prog. Artif. Intell. 9(2), 85–112 (2020)

    Article  Google Scholar 

  14. Urban, G., Porhemmat, S., Stark, M., Feeley, B., Okada, K., Baldi, P.: Classifying shoulder implants in X-ray images using deep learning. Comput. Struct. Biotechnol. J. 18, 967–972 (2020)

    Article  Google Scholar 

  15. Geng, E.A., et al.: Development of a machine learning algorithm to identify total and reverse shoulder arthroplasty implants from X-ray images. J. Orthop. 35, 74–78 (2023)

    Article  Google Scholar 

  16. Yi, P.H., et al.: Automated detection and classification of shoulder arthroplasty models using deep learning. Skeletal Radiol. 49, 1623–1632 (2020)

    Article  Google Scholar 

  17. Khalifa, N.E., Loey, M., Mirjalili, S.: A comprehensive survey of recent trends in deep learning for digital images augmentation. Artif. Intell. Rev. 55, 1–27 (2022)

    Google Scholar 

  18. O'Shea, K., Nash, R.: An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015)

  19. Kim, H.E., Cosa-Linan, A., Santhanam, N., Jannesari, M., Maros, M.E., Ganslandt, T.: Transfer learning for medical image classification: a literature review. BMC Med. Imaging 22(1), 69 (2022)

    Article  Google Scholar 

  20. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  22. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  23. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1 (2017)

    Google Scholar 

  24. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  26. Lydia, A., Francis, S.: Adagrad—an optimizer for stochastic gradient descent. Int. J. Inf. Comput. Sci. 6(5), 566–568 (2019)

    Google Scholar 

  27. Vakili, M., Ghamsari, M., Rezaei, M.: Performance analysis and comparison of machine and deep learning algorithms for IoT data classification. arXiv preprint arXiv:2001.09636 (2020)

  28. Ramanathan, A., Christy Bobby, T.: Classification of corpus callosum layer in mid-saggital MRI images using machine learning techniques for autism disorder. In: Saha, S., Nagaraj, N., Tripathi, S. (eds.) MMLA 2019. CCIS, vol. 1290, pp. 78–91. Springer, Singapore (2020). https://doi.org/10.1007/978-981-33-6463-9_7

    Chapter  Google Scholar 

  29. Yu, T., Zhu, H.: Hyper-parameter optimization: a review of algorithms and applications. arXiv preprint arXiv:2003.05689 (2020)

  30. Sultan, H., Owais, M., Park, C., Mahmood, T., Haider, A., Park, K.R.: Artificial intelligence-based recognition of different types of shoulder implants in X-ray scans based on dense residual ensemble-network for personalized medicine. J. Pers. Med. 11(6), 482 (2021)

    Article  Google Scholar 

  31. Zhou, M., Mo, S.: Shoulder implant x-ray manufacturer classification: exploring with vision transformer. arXiv preprint arXiv:2104.07667 (2021)

  32. Karaci, A.: Detection and classification of shoulder implants from X-ray images: YOLO and pretrained convolution neural network based approach. J. Fac. Eng. Archit. Gazi Univ 37, 283–294 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Batta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mishra, A. et al. (2024). Harnessing the Potential of Deep Learning for Total Shoulder Implant Classification: A Comparative Study. In: Waiter, G., Lambrou, T., Leontidis, G., Oren, N., Morris, T., Gordon, S. (eds) Medical Image Understanding and Analysis. MIUA 2023. Lecture Notes in Computer Science, vol 14122. Springer, Cham. https://doi.org/10.1007/978-3-031-48593-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48593-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48592-3

  • Online ISBN: 978-3-031-48593-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics